POD Translation
by pod2pdf

Batch.pm

Title Page Batch.pm

16 December 2003 Fly leaf

Table of Contents
Batch.pm

NAME

SYNOPSIS

EXPORT

METHODS
new($type, @files)
next()
strict_off()
strict_on()
warnings()
warnings_ off()
warnings_on()
filename()

RELATED MODULES

TODO

LICENSE

AUTHOR

NNNNMNNNNRRPRRRRRRRER

16 December 2003

Batch.pm Table of Contents

ii 16 December 2003

pod2pdf Batch.pm

NAME
MARC::Batch - Perl module for handling files of MARC::Record objects

SYNOPSIS

MARC::Batch hides all the file handling of files of MARC::Records. MARC::Record still does the
file 110, but MARC::Batch handles the multiple-file aspects.
use MARC::Batch;

my $batch = new MARC::Batch('USMARC’, @files);
while (my $marc = $batch->next) {

print $marc->subfield(245,"a"), "\n";
}

EXPORT

None. Everything is a class method.

METHODS

new($type, @files)
Create a MARC::Batch object that will process @files.
$type must be either "USMARC" or "MicroLIF". If you want to specify "MARC::File::USMARC" or
"MARC::File::MicroLIF", that's OK, too. new() returns a new MARC::Batch object.
@files can be a list of filenames:
my $batch = MARC::Batch->new('USMARC’, filel.marc’, file2.marc’);

Your @files may also contain filehandles. So if you‘ve got a large file that's gzipped you can open a
pipe to gzip and pass it in:

my $fh = 10::File->new('gunzip -¢ marc.dat.gz |);

my $batch = MARC::Batch->new('USMARC’, $fh);

And you can mix and match if you really want to:
my $batch = MARC::Batch->new('USMARC’, $fh, filel.marc’);

next()
Read the next record from that batch, and return it as a MARC::Record object. If the current file is at
EOF, close it and open the next one. next() will return undef when there is no more data to be read
from any batch files.
By default, next() also will return undef if an error is encountered while reading from the batch. If
not checked for this can cause your iteration to terminate prematurely. To alter this behavior, see
strict_off(). You can retrieve warning messages using the warnings() method.
Optionally you can pass in a filter function as a subroutine reference if you are only interested in
particular fields from the record. This can boost performance.

strict_off()
If you would like MARC::Batch to continue after it has encountered what it believes to be bad MARC
data then use this method to turn strict OFF. A call to strict_off() always returns true (1).
strict_off() can be handy when you don‘t care about the quality of your MARC data, and just
want to plow through it. For safety, MARC::Batch strict is ON by default.

strict_on()
The opposite of strict_off(), and the default state. You shouldn‘t have to use this method unless
you'‘ve previously used strict_off(), and want it back on again. When strict is ON calls to next()
will return undef when an error is encountered while reading MARC data. strict_on() always returns true

).

warnings()
Returns a list of warnings that have accumulated while processing a particular batch file. As a side
effect the warning buffer will be cleared.
my @warnings = $batch->warnings();

This method is also used internally to set warnings, so you probably don't want to be passing in anything
as this will set warnings on your batch object.

16 December 2003 1

Batch.pm pod2pdf

warnings() will return the empty list when there are no warnings.

warnings_off()
Turns off the default behavior of printing warnings to STDERR. However, even with warnings off the
messages can still be retrieved using the warnings() method if you wish to check for them.
warnings_off() always returns true (1).

warnings_on()
Turns on warnings so that diagnostic information is printed to STDERR. This is on by default so you
shouldn‘t have to use it unless you‘ve previously turned off warnings using warnings_off().
warnings_on() always returns true (1).

filename()
Returns the currently open filename or undef if there is not currently a file open on this batch object.

RELATED MODULES
MARC::Record, MARC::Lint
TODO
None yet. Send me your ideas and needs.

LICENSE

This code may be distributed under the same terms as Perl itself.
Please note that these modules are not products of or supported by the employers of the various
contributors to the code.

AUTHOR

Andy Lester, < <andy@petdance.com>

2 16 December 2003

	Table of Contents
	NAME
	SYNOPSIS
	EXPORT
	METHODS
	new($type, @files)
	next()
	strict_off()
	strict_on()
	warnings()
	warnings_off()
	warnings_on()
	filename()

	RELATED MODULES
	TODO
	LICENSE
	AUTHOR

