
POD Translation
by pod2pdf
ajf@afco.demon.co.uk

Tutorial.pod

Title Page Tutorial.pod

08 September 2004 Fly leaf

Table of Contents
Tutorial.pod

NAME 1
SYNOPSIS 1
INTRODUCTION 1

What is MARC? 1
What is this Tutorial? 1
History of MARC on CPAN 1
Brief Overview of MARC Classes 1

MARC::Batch 1
MARC::Field 1
MARC::Lint 2
MARC::Record 2
MARC::Doc::Tutorial 2
MARC::File 2
MARC::File::MicroLIF 2
MARC::File::USMARC 2

Help Wanted! 2
READING 2

Reading a record from a file 2
Iterating through a batch file 2
Checking for errors 3
Recovering from errors 3
Looking at a field 4
Looking at repeatable fields 4
Looking at a set of related fields 5
Looking at all the fields in a record 5

CREATING 6
Creating a record 6

WRITING 6
Writing records to a file 6
Debugging with as_formatted() 7
Debugging with marcdump() 8

UPDATING 8
Adding a field 8
Preserving field order 9
Deleting a field 9
Changing existing fields 10
Updating subfields and indicators 10
Changing a record‘s leader 11
Modifying fields without indicators 11
Reordering subfields 12
Updating subject subfield x to subfield v 13

VALIDATING 14
Using MARC::Lint 14
Customizing MARC::Lint 15

SWOLLEN APPENDICES 16
Comparing Collections 16
Authority Records 16
URLs 16
ISBN/ISSNs 16
Call numbers 16
Subject headings 16
HTML 17

08 September 2004 i

Tutorial.pod Table of Contents

XML 17
Excel 17
Z39.50 17
Databases 18
Procite/Endnote 20

CONTRIBUTORS 20

ii 08 September 2004

pod2pdf Tutorial.pod

NAME
MARC::Doc::Tutorial - A documentation-only module for new users of MARC::Record

SYNOPSIS

 perldoc MARC::Doc::Tutorial

INTRODUCTION

What is MARC?
The MAchine Readable Cataloging format was designed by the Library of Congress in the late 1960s in
order to allow libraries to convert their card catalogs into a digital format. The advantages of having
computerized card catalogs were soon realized, and now MARC is being used by all sorts of libraries
around the world to provide computerized access to their collections. MARC data in transmission format
is optimized for processing by computers, so it‘s not very readable for the normal human. For more
about the MARC format, visit the Library of Congress at http://www.loc.gov/marc/

What is this Tutorial?
The document you are reading is a beginners guide to using Perl to processing MARC data, written in
the ‘cookbook’ style. Inside, you will find recipes on how to read, write, update and convert MARC
data using the MARC::Record CPAN package. As with any cookbook, you should feel free to dip in at
any section and use the recipe you find interesting. If you are new to Perl, you may want to read from
the beginning.
The document you are reading is distributed with the MARC::Record package, however in case you are
reading it somewhere else, you can find the latest version at CPAN:
http://www.cpan.org/modules/by-module/MARC/. You‘ll notice that some sections aren‘t filled in yet,
which is a result of this document being a work in progress. If you have ideas for new sections please
make a suggestion to perl4lib: http://www.rice.edu/perl4lib/.

History of MARC on CPAN
In 1999, a group of developers began working on MARC.pm to provide a Perl module for working with
MARC data. MARC.pm was quite successful since it grew to include many new options that were
requested by the Perl/library community. However, in adding these features the module swiftly outgrew
its own clothes, and maintenance and addition of new features became extremely difficult. In addition,
as libraries began using MARC.pm to process large MARC data files (1000 records) they noticed that
memory consumption would skyrocket. Memory consumption became an issue for large batches of
records because MARC.pm‘s object model was based on the ‘batch’ rather than the record... so each
record in the file would often be read into memory. There were ways of getting around this, but they
were not obvious. Some effort was made to reconcile the two approaches (batch and record), but with
limited success.
In mid 2001, Andy Lester released MARC::Record and MARC::Field which provided a much simpler
and maintainable package for processing MARC data with Perl. As its name suggests, MARC::Record
treats an individual MARC record as the primary Perl object, rather than having the object represent a
given set of records. Instead of forking the two projects, the developers agreed to encourage use of the
MARC::Record framework, and to work on enhancing MARC::Record rather than extending MARC.pm
further. Soon afterwards, MARC::Batch was added, which allows you to read in a large data file without
having to worry about memory consumption.

Brief Overview of MARC Classes
The MARC::Record package is made up of several separate packages. This can be somewhat confusing
to people new to Perl, or Object Oriented Programming. However this framework allows easy
extension, and is built to support new input/output formats as their need arises. For a good introduction
to using the object oriented features of Perl, see the perlboot documentation that came with your version
of Perl.
Here are the packages that get installed with MARC::Record:

MARC::Batch
A convenience class for accessing MARC data contained in an external file.

MARC::Field

08 September 2004 1

Tutorial.pod pod2pdf

An object for representing the indicators and subfields of a single MARC field.

MARC::Lint
An extension to check the validity of MARC records.

MARC::Record
This primary class represents a MARC record, being a container for multiple MARC::Field
objects.

MARC::Doc::Tutorial
This document!

MARC::File
A superclass for representing files of MARC data.

MARC::File::MicroLIF
A subclass of MARC::File for working with data encoded in the MicroLIF format.

MARC::File::USMARC
A subclass of MARC::File for working with data encoded in the USMARC format.

Help Wanted!
It‘s already been mentioned but it‘s worth mentioning again: MARC::Doc::Tutorial is a work in
progress, and you are encouraged to submit any suggestions for additional recipes via the perl4lib
mailing list at http://www.rice.edu/perl4lib. Also, the development group is always looking for
additional developers with good ideas; if you are interested you can sign up at SourceForge:
http://sourceforge.net/projects/marcpm/.

READING

Reading a record from a file
Let‘s say you have a USMARC record in ‘file.dat’ and you‘d like to read in the record and print out its
title.
 1 ## Example R1
 2
 3 ## create a MARC::Batch object.
 4 use MARC::Batch;
 5 my $batch = MARC::Batch(’USMARC’, ’file.dat’);
 6
 7 ## get a MARC record from the MARC::Batch object.
 8 ## the $record will be a MARC::Record object.
 9 my $record = $batch->next();
 10
 11 ## print the title contained in the record.
 12 print $record->title(),"\n";

Using the distribution‘s ‘t/camel.usmarc‘, your result should be:
 ActivePerl with ASP and ADO / Tobias Martinsson.

Iterating through a batch file
Now imagine that ‘file.dat’ actually contains multiple records and we want to print the title for each of
them. Our program doesn‘t have to change very much at all: we just need to add a loop around our call
to next().
 1 ## Example R2
 2
 3 ## create a MARC::Batch object.
 4 use MARC::Batch;
 5 my $batch = MARC::Batch->new(’USMARC’,’file.dat’);
 6
 7 while (my $record = $batch->next()) {
 8
 9 ## print the title contained in the record.
 10 print $record->title(),"\n";
 11

2 08 September 2004

pod2pdf Tutorial.pod

 12 }

The call to the next() method at line 7 returns the next record from the file. next() returns undef
when there are no more records left in the file, which causes the while loop to end. This is a useful
idiom for reading in all the records in a file. Your results with ‘camel.usmarc’ should be:
 ActivePerl with ASP and ADO / Tobias Martinsson.
 Programming the Perl DBI / Alligator Descartes and Tim Bunce.
 .
 .
 .
 Cross-platform Perl / Eric F. Johnson.

Checking for errors
It is a good idea to get in the habit of checking for errors. MARC/Perl has been designed to help you do
this. Calls to next() when iterating through a batch file will return undef when there are no more
records to return... AND when an error was encountered (see the next recipe to subvert this). You
probably want to make sure that you didn‘t abruptly stop reading a batch file because of an error.
 1 ## Example R3
 2
 3 ## create a MARC::Batch object.
 4 use MARC::Batch;
 5 my $batch = MARC::Batch->new(’USMARC’,’file.dat’);
 6
 7 ## get a marc record from the MARC::Batch object.
 8 ## $record will be a MARC::Record object.
 9 while (my $record = $batch->next()) {
 10 print $record->title(),"\n";
 11 }
 12
 13 ## make sure there weren’t any problems.
 14 if (my @warnings = $batch->warnings()) {
 15 print "\nWarnings were detected!\n", @warnings;
 16 }

The call to warnings() at line 14 will retrieve any warning messages and store them in @warnings.
This allows you to detect when next() has aborted prematurely (before the end of the file has been
reached). When a warning is detected, an explanation is sent to STDERR. By introducing an error into
‘camel.usmarc‘, we‘ll receive the following output to STDOUT:
 Warnings were detected!
 Invalid indicators "a0" forced to blanks in record 1 for tag 245

Recovering from errors
You may want to keep reading a batch file even after an error has been encountered. If so, you will want
to turn strict mode off using the strict_off() method. You can also prevent warnings from being
printed to STDERR using the warnings_off() method. By default, strict is on as a safety precaution
to prevent you from using corrupt MARC data. Once off, you can turn both strict and warnings back on
again with the strict_on() and warnings_on() methods.
 1 ## Example R4
 2
 3 use MARC::Batch;
 4 my $batch = MARC::Batch->new(’USMARC’, ’file.dat’);
 5 $batch->strict_off();
 6
 7 while (my $record = $batch->next()) {
 8 print $record->title(),"\n";
 9 }
 10
 11 ## make sure there weren’t any problems.
 12 if (my @warnings = $batch->warnings()) {

08 September 2004 3

Tutorial.pod pod2pdf

 13 print "\nWarnings were detected!\n", @warnings;
 14 }

Introducing a second error to the ‘camel.usmarc’ file gives the following:
 ActivePerl with ASP and ADO / Tobias Martinsson.
 Programming the Perl DBI / Alligator Descartes and Tim Bunce.
 .
 .
 .
 Cross-platform Perl / Eric F. Johnson.

 Warnings were detected!
 Invalid indicators "a0" forced to blanks in record 1 for tag 245
 Invalid indicators "a0" forced to blanks in record 5 for tag 245

Looking at a field
Our previous examples use MARC::Record‘s title() method to easily access the 245 field, but you
will probably want programs that access lots of other MARC fields. MARC::Record‘s field()
method gives you complete access to the data found in any MARC field. The field() method returns
a MARC::Field object which can be used to access the data, indicators, and even the individual
subfields. Our next example shows how this is done.
 1 ## Example R5
 2
 3 ## open a file.
 4 use MARC::Batch;
 5 my $batch = MARC::Batch->new(’USMARC’,’file.dat’);
 6
 7 ## read a record.
 8 my $record = $batch->next();
 9
 10 ## get the 100 field as a MARC::Field object.
 11 my $field = $record->field(’100’);
 12 print "The 100 field contains: ",$field->as_string(),"\n";
 13 print "The 1st indicator is ",$field->indicator(1),"\n";
 14 print "The 2nd indicator is ",$field->indicator(2),"\n";
 15 print "Subfield d contains: ",$field->subfield(’d’),"\n";

Which results in something like:
 The 100 field contains: Martinsson, Tobias, 1976-
 The 1st indicator is 1
 The 2nd indicator is
 Subfield d contains: 1976-

As before, use a while loop to iterate through all the records in a batch.

Looking at repeatable fields
So how do you retrieve data from repeatable fields? The field() method can help you with this as
well. In our previous example‘s line 11, the field() method was used in a scalar context, since the
result was being assigned to the variable $field. However in a list context, field() will return all
the fields in the record of that particular type. For example:
 1 ## Example R6
 2
 3 use MARC::Batch;
 4 my $file = MARC::Batch->new(’USMARC’,’file.dat’);
 5 my $record = $batch->next();
 6
 7 ## get all the 650 fields (list context).
 8 my @fields = $record->field(’650’);
 9

4 08 September 2004

pod2pdf Tutorial.pod

 10 ## examine each 650 field and print it out.
 11 foreach my $field (@fields) {
 12 print $field->as_string(),"\n";
 13 }

Which prints out the following for the first record of ‘t/camel.usmarc‘:
 Active server pages.
 ActiveX.

Looking at a set of related fields
field() also allows you to retrieve similar fields using ’.’ as a wildcard.
 1 ## Example R7
 2
 3 use MARC::Batch;
 4 my $batch = MARC::Batch->new(’USMARC’,’file.dat’);
 5 my $record = $batch->next();
 6
 7 # retrieve all title fields in one shot.
 8 foreach my $field ($record->field(’2..’)) {
 9 print $field->tag(),’ contains ’,$field->as_string(),"\n";
 10 }

Notice the shorthand in line 8 which compacts lines 7-13 of our previous example. Instead of storing the
fields in an array, the field() still returns a list in the for loop. Line 9 uses the tag() method
which returns the tag number for a particular MARC field, which is useful when you aren‘t certain what
tag you are currently dealing with. Sample output from this recipe:
 245 contains ActivePerl with ASP and ADO / Tobias Martinsson.
 260 contains New York : John Wiley & Sons, 2000.

You can also return all tags for a specific record by using ’...’ in field (though, see the next recipe).

Looking at all the fields in a record
The last example in this section illustrates how to retrieve all the fields in a record using the fields()
method. This method is similar to passing ’...’ as a wildcard (see our previous recipe for alternative
access).
 1 ## Example R8
 2
 3 use MARC::Batch;
 4 my $file = MARC::Batch->new(’USMARC’,’file.dat’);
 5 my $record = $batch->next();
 6
 7 ## get all of the fields using the fields() method.
 8 my @fields = $record->fields();
 9
 10 ## print out the tag, the indicators and the field contents.
 11 foreach my $field (@fields) {
 12 print
 13 $field->tag(), " ",
 14 defined $field->indicator(1) ? $field->indicator(1) : "",
 15 defined $field->indicator(2) ? $field->indicator(2) : "",
 16 " ", $field->as_string, " \n";
 17 }

The above code would print the following for the first record of ‘t/camel.usmarc‘:
 001 fol05731351
 003 IMchF
 .
 .
 .

08 September 2004 5

Tutorial.pod pod2pdf

 300 xxi, 289 p. : ill. ; 23 cm. + 1 computer laser disc (4 3/4 in.)
 500 "Wiley Computer Publishing."
 650 0 Perl (Computer program language)
 630 00 Active server pages.
 630 00 ActiveX.

CREATING
The examples in the Section 1 covered how to read in existing USMARC data in a file. Section 2 will
show you how to create a MARC record from scratch. The techniques in this section would allow you to
write programs which create MARC records that could then be loaded into an online catalog, or sent to a
third party.

Creating a record
To create a new MARC record, you‘ll need to first create a MARC::Record object, add a leader (though
MARC::Record can create leaders automatically if you don‘t specifically define one), and then create
and add MARC::Field objects to your MARC::Record object. For example:
 1 ## Example C1
 2
 3 ## create a MARC::Record object.
 4 use MARC::Record;
 5 my $record = MARC::Record->new();
 6
 7 ## add the leader to the record. optional.
 8 $record->leader(’00903pam 2200265 a 4500’);
 9
 10 ## create an author field.
 11 my $author = MARC::Field->new(
 12 ’100’,1,’’,
 13 a => ’Logan, Robert K.’,
 14 d => ’1939-’
 15);
 16 $record->append_fields($author);
 17
 18 ## create a title field.
 19 my $title = MARC::Field->new(
 20 ’245’,’1’,’4’,
 21 a => ’The alphabet effect /’,
 22 c => ’Robert K. Logan.’
 23);
 24 $record->append_fields($title);

The key to creating records from scratch is to use append_fields(), which adds a field to the end of
the record. Since each field gets added at the end, it‘s up to you to order the fields the way you want.
insert_fields_before() and insert_fields_after() are similar methods that allow you
to define where the field gets added. These methods are covered in more detail below.

WRITING
Sections 1 and 2 showed how to read and create USMARC data. Once you know how to read and
create, it becomes important to know how to write the USMARC data to disk in order to save your
work. In these examples, we will create a new record and save it to a file called ‘record.dat’.

Writing records to a file

 1 ## Example W1
 2
 3 ## create a MARC::Record object.
 4 use MARC::Record;
 5 my $record = MARC::Record->new();
 6
 7 ## add the leader to the record. optional.

6 08 September 2004

pod2pdf Tutorial.pod

 8 $record->leader(’00903pam 2200265 a 4500’);
 9
 10 ## create an author field.
 11 my $author = MARC::Field->new(
 12 ’100’,1,’’,
 13 a => ’Logan, Robert K.’,
 14 d => ’1939-’
 15);
 16
 17 ## create a title field.
 18 my $title = MARC::Field->new(
 19 ’245’,’1’,’4’,
 20 a => ’The alphabet effect /’,
 21 c => ’Robert K. Logan.’
 22);
 23
 24 $record->append_fields($author, $title);
 25
 26 ## open a filehandle to write to ’record.dat’.
 27 open(OUTPUT, ’> record.dat’) or die $!;
 28 print OUTPUT $record->as_usmarc();
 29 close(OUTPUT);

The as_usmarc() method call at line 28 returns a scalar value which is the raw USMARC data for
$record. The raw data is then promptly printed to the OUTPUT file handle. If you want to output
multiple records to a file, simply repeat the process at line 28 for the additional records. Also of note is
the append_fields method: unlike recipe C1 which called the method once for each field added, this
recipe demonstrates that append_fields can accept multiple arguments.
Note to the curious: the as_usmarc() method is actually an alias to the MARC::File::USMARC
encode() method. Having separate encode() methods is a design feature of the MARC class
hierarchy, since it allows extensions to be built that translate MARC::Record objects into different data
formats.

Debugging with as_formatted()
Since raw USMARC data isn‘t very easy for humans to read, it is often useful to be able to see the
contents of your MARC::Record object represented in a ‘pretty’ way for debugging purposes. If you
have a MARC::Record object you‘d like to pretty-print, use the as_formatted() method.
 1 ## Example W2
 2
 3 ## create a MARC::Record object.
 4 use MARC::Record;
 5 my $record = MARC::Record->new();
 6
 7 $record->leader(’00903pam 2200265 a 4500’);
 8
 9 $record->append_fields(
 10 MARC::Field->new(’100’,’1’,’’, a=>’Logan, Robert K.’, d=>’1939-’),
 11 MARC::Field->new(’245’,’1’,’4’, a=>’The alphabet effect /’, c=>’Robert K. Logan.’)
 12);
 13
 14 ## pretty print the record.
 15 print $record->as_formatted(), "\n";

This code will pretty print the contents of the newly created record:
 LDR 00903pam 2200265 a 4500
 100 1 _aLogan, Robert K.
 _d1939-
 245 14 _aThe alphabet effect /
 _cRobert K. Logan.

08 September 2004 7

Tutorial.pod pod2pdf

Notice on lines 9-12 how you can add a list of new fields by creating MARC::Field objects within a call
to append_fields(). This is yet another shorthand method to those shown in recipes C1 and W1.
For more pretty-printing capabilities, try marcdump() in our next recipe.

Debugging with marcdump()
If you have written USMARC data to a file (as in recipe W2) and you would like to verify that the data
is stored correctly you can use the marcdump command line utility that was installed with the
MARC::Record package:
 % marcdump record.dat
 record.dat
 LDR 00122pam 2200049 a 4500
 100 1 _aLogan, Robert K.
 _d1939-
 245 14 _aThe alphabet effect /
 _cRobert K. Logan.

 Recs Errs Filename
 ----- ----- --------
 1 0 record.dat

As you can see, this command results in the record being pretty printed to your screen (STDOUT)
similarly to the as_formatted method from recipe W2. It is useful for verifying your USMARC data
after it has been stored on disk. More details about debugging are found later in VALIDATING.

UPDATING
Now that you know how to read, write and create MARC data, you have the tools you need to update or
edit exiting MARC data. Updating MARC data is a common task for library catalogers. Sometimes
there are huge amounts of records that need to be touched up... and while the touch ups are very detail
oriented, they are also highly repetitive. Luckily, computers are tireless, and not very prone to error
(assuming the programmer isn‘t).
When libraries receive large batches of MARC records for electronic text collections such as
NetLibrary, Making of America, or microfiche sets like Early American Imprints, the records are often
loaded into an online system and then the system is used to update the records. Unfortunately, not all
these systems are created equal, and catalogers have to spend a great deal of time touching up each
individual record. An alternative would be to process the records prior to import and then, once in the
system, the records would not need editing. This scenario would save a great deal of time for the
cataloger who would be liberated to spend their time doing original cataloging... which computers are
notably bad at!

Adding a field
Imagine a batch of records in ‘file.dat’ that you‘d like to add local notes (590) to, then saving your
changes:
 1 ## Example U1
 2
 3 ## create our MARC::Batch object.
 4 use MARC::Batch;
 5 my $batch = MARC::Batch->new(’USMARC’,’file.dat’);
 6
 7 ## open a file handle to write to.
 8 open(OUT,’>new.dat’) or die $!;
 9
 10 ## read each record, modify, then print.
 11 while (my $record = $batch->next()) {
 12
 13 ## add a 590 field.
 14 $record->append_fields(
 15 MARC::Field->new(’590’,’’,’’,a=>’Access provided by Enron.’)
 16);
 17
 18 print OUT $record->as_usmarc();

8 08 September 2004

pod2pdf Tutorial.pod

 19
 20 }
 21
 22 close(OUT);

Preserving field order
As its name suggests, append_fields() will add the 590 field in recipe U1 to the end of the record.
If you want to preserve a particular order, you can use the insert_fields_before() and
insert_fields_after() methods. In order to use these, you need to locate the field you want to
insert before or after. Here is an example (insert_fields_after() works similarly):
 1 ## Example U2
 2
 3 use MARC::Batch;
 4 my $batch = MARC::Batch->new(’USMARC’,’file.dat’);
 5 open(OUT,’>new.dat’) or die $!;
 6
 7 ## read in each record.
 8 while (my $record = $batch->next()) {
 9
 10 ## find the tag after 590.
 11 my $before;
 12 foreach ($record->fields()) {
 13 $before = $_;
 14 last if $_->tag() > 590;
 15 }
 16
 17 ## create the 590 field.
 18 my $new = MARC::Field->new(’590’,’’,’’,a=>’Access provided by Enron.’);
 19
 20 ## insert our 590 field after the $before.
 21 $record->insert_fields_before($before,$new);
 22
 23 ## and print out the new record.
 24 print OUT $record->as_usmarc();
 25
 26 }

Deleting a field
You can also delete fields that you don‘t want. But you will probably want to check that the field
contains what you expect before deleting it. Let‘s say Enron has gone out of business and the 590 field
needs to be deleted:
 1 ## Example U3
 2
 3 use MARC::Batch;
 4 my $batch = MARC::Batch->new(’USMARC’,’new.dat’);
 5 open(OUT,’>newer.dat’) or die $1;
 6
 7 while (my $record = $batch->next()) {
 8
 9 ## get the 590 record.
 10 my $field = $record->field(’590’);
 11
 12 ## if there is a 590 AND it has the word "Enron"...
 13 if ($field and $field->as_string() =~ /Enron/i) {
 14
 15 ## delete it!
 16 $record->delete_field($field);
 17
 18 }

08 September 2004 9

Tutorial.pod pod2pdf

 19
 20 ## output possibly modified record.
 21 print OUT $record->as_usmarc();
 22
 23 }

The 590 field is retrieved on line 10, but notice how we check that we actually received a valid
$field, and that it then contains the word ‘Enron’ before we delete it. You need to pass
delete_field() a MARC::Field object that can be retrieved with the field() method.

Changing existing fields
Perhaps rather than adding or deleting a field, you need to modify an existing field. This is achieved in
several steps: first, read in the MARC record you want to update, and then the field you‘re interested in.
From there, call the field‘s update or replace_with methods to modify its contents, and then
resave the record. Below is an example of updating existing 590 field‘s containing the word ‘Enron’ to
indicate that access is now provided through Arthur Andersen:
 1 ## Example U4
 2
 3 use MARC::Batch;
 4 my $batch = MARC::Batch->new(’USMARC’,’new.dat’);
 5 open(OUT,’>newer.dat’) or die $1;
 6
 7 while (my $record = $batch->next()) {
 8
 9 ## look for a 590 containing "Enron"...
 10 my $field = $record->field(’590’);
 11 if ($field and $field->as_string =~ /Enron/i) {
 12
 13 ## create a new 590 field.
 14 my $new_field = MARC::Field->new(
 15 ’590’,’’,’’, a => ’Access provided by Arthur Andersen.’);
 16
 17 ## replace existing with our new one.
 18 $field->replace_with($new_field);
 19
 20 }
 21
 22 ## output possibly modified record.
 23 print OUT $record->as_usmarc();
 24
 25 }

In this example, we used MARC::Field‘s method replace_with() to replace an existing field in the
record with a new field that we created. To use replace_with(), you need to retrieve the field you
want to replace from a MARC::Record object (line 10), create a new field to replace the existing one
with (lines 13-15), and then call the existing field‘s replace_with() method passing the new field
as an argument (lines 18). You must pass replace_with() a valid MARC::Field object.

Updating subfields and indicators
If you‘d rather not replace an existing field with a new one, you can also edit the contents of the field
itself using the update() method. Let‘s say you‘ve got a batch of records and want to make sure that
the 2nd indicator for the 245 field is properly set for titles that begin with ‘The’ (where the indicator
should be ‘4’).
 1 ## Example U5
 2
 3 use MARC::Batch;
 4 my $batch = MARC::Batch->new(’USMARC’,’file.dat’);
 5 open(OUT,’>new.dat’) or die $!;
 6

10 08 September 2004

pod2pdf Tutorial.pod

 7 while (my $record = $batch->next()) {
 8
 9 ## retrieve the 245 record.
 10 my $field_245 = $record->field(’245’);
 11
 12 ## if we got 245 and it starts with ’The’...
 13 if ($field_245 and $field_245->as_string() =~ /^The /) {
 14
 15 ## if the 2nd indicator isn’t 4, update
 16 if ($field_245->indicator(2) != 4) {
 17 $field_245->update(ind2 => 4);
 18 }
 19
 20 }
 21
 22 print OUT $record->as_usmarc();
 23
 24 }

In a similar fashion, you can update individual or multiple subfields:
 $field_245->update(a => ’History of the World :’, b => ’part 1’);

But beware, you can only update the first occurrence of a subfield using update(). If you need to do
more finer grained updates, you are advised to build a new field and replace the existing field with
replace_with().

Changing a record‘s leader
The above procedure works for fields, but editing the leader requires that you use the leader()
method. When called with no arguments, leader() will return the current leader, and when you pass a
scalar value as an argument, the leader will be set to this value. This example shows how you might
want to update position 6 of a records leader to reflect a computer file.
 1 ## Example U6
 2
 3 use MARC::Batch;
 4 my $batch = MARC::Batch->new(’USMARC’,’file.dat’);
 5 open(OUT,’>new.dat’) or die $!;
 6 my $record = $batch->next();
 7
 8 ## get the current leader.
 9 my $leader = $record->leader();
 10
 11 ## replace position 6 with ’m’
 12 substr($leader,6,1) = ’m’;
 13
 14 ## update the leader
 15 $record->leader($leader);
 16
 17 ## save the record to a file
 18 print OUT $record->as_usmarc();

Modifying fields without indicators
MARC::Record and MARC::Field are smart and know that you don‘t have field indicators with tags less
than 010. Here‘s an example of updating/adding an 005 field to indicate a new transaction time. For a
little pizzazz, we use Perl‘s localtime() to generate the data we need for this field.
 1 ## Example U7
 2
 3 use MARC::Batch;
 4 my $batch = MARC::Batch->new(’USMARC’,’file.dat’);
 5 open(OUT,’>new.dat’) or die $!;

08 September 2004 11

Tutorial.pod pod2pdf

 6
 7 while (my $record = $batch->next()) {
 8
 9 ## see if there is a 005 field.
 10 my $field_005 = $record->field(’005’);
 11
 12 ## delete it if we find one.
 13 $record->delete_field($field_005) if $field_005;
 14
 15 ## figure out the contents of our new 005 field.
 16 my ($sec,$min,$hour,$mday,$mon,$year) = localtime();
 17 $year += 1900; $mon += 1; # catering to offsets.
 18 my $datetime = sprintf("%4d%02d%02d%02d%02d%02d.0",
 19 $year,$mon,$mday,$hour,$min,$sec);
 20
 21 ## create a new 005 field using our new datetime.
 22 $record->append_fields(MARC::Field->new(’005’,$datetime));
 23
 24 ## save record to a file.
 25 print OUT $record->as_usmarc();
 26
 27 }

Reordering subfields
You may find yourself in the situation where you would like to programmatically reorder, and possibly
modify, subfields in a particular field. For example, imagine that you have a batch of records that have
856 fields which contain subfields z, u, and possibly 3... in any order! Now imagine that you‘d like to
standardize the subfield z, and reorder them so that subfield 3 precedes subfield z, which precedes
subfield u. This is tricky but can be done in the following manner: read in a record, extract the existing
856 field, build a new 856 field based on the existing one, replace the existing field with your newly
created version.
 1 ## Example U8
 2
 3 use MARC::Batch;
 4 my $batch = MARC::Batch->new(’USMARC’,’856.dat’);
 5 open(OUT,’>856_new.dat’) or die $!;
 6
 7 while (my $record = $batch->next()) {
 8
 9 my $existing = $record->field(’856’);
 10
 11 ## make sure 856 exists.
 12 if ($existing) {
 13
 14 ## our ordered subfields.
 15 my @subfields = ();
 16
 17 ## if we have a subfield 3, add it.
 18 if (defined($existing->subfield(’3’))) {
 19 push(@subfields,’3’,$existing->subfield(’3’));
 20 }
 21
 22 ## now add subfields z and u.
 23 push(@subfields,’z’,’Access restricted’,
 24 ’u’,$existing->subfield(’u’));
 25
 26 ## create a new 856.
 27 my $new = MARC::Field->new(
 28 856’, $existing->indicator(1),

12 08 September 2004

pod2pdf Tutorial.pod

 29 $existing->indicator(2), @subfields
 30);
 31
 32 ## replace the existing subfield.
 33 $existing->replace_with($new);
 34
 35 }
 36
 37 ## write out the record
 38 print OUT $record->as_usmarc();
 39
 40 }

Updating subject subfield x to subfield v
As a somewhat more complicated example, you may find yourself wanting to update the last subfield x
in a 650 field to be a subfield v instead. With the MARC::Field subfields() and
replace_with() methods along with some fancy footwork this can be done relatively easily.
 1 ## Example U9
 2
 3 use MARC::Batch;
 4
 5 my $file = shift;
 6
 7 my $batch = MARC::Batch->new(’USMARC’, $file);
 8 while (my $record = $batch->next()) {
 9
 10 # go through all 6XX fields in the record.
 11 foreach my $subject ($record->field(’6..’)) {
 12
 13 # extract subfields as an array of array refs.
 14 my @subfields = $subject->subfields();
 15
 16 # setup an array to store our new field.
 17 my @newSubfields = ();
 18
 19 # a flag to indicate that we found an subfield x.
 20 my $foundX = 0;
 21
 22 # use pop() to read the subfields backwards.
 23 while (my $subfield = pop(@subfields)) {
 24
 25 # for convenience, pull out the subfield
 26 # code and data from the array ref.
 27 my ($code,$data) = @$subfield;
 28
 29 # if the subfield code is ’x’ and
 30 # we haven’t already found one...
 31 if ($code eq ’x’ and ! $foundX) {
 32
 33 # change to a v.
 34 $code = ’v’;
 35
 36 # set flag so we know not to
 37 # translate any more subfield x.
 38 $foundX = 1;
 39
 40 }
 41
 42 # add our (potentially changed) subfield

08 September 2004 13

Tutorial.pod pod2pdf

 43 # data to our new subfield data array.
 44 unshift(@newSubfields, $code, $data);
 45
 46 }
 47
 48 # if we did find a subfield x, then create a new field using our
 49 # new subfield data, and replace the old one with the new one.
 50 if ($foundX) {
 51 my $newSubject = MARC::Field->new(
 52 $subject->tag(),
 53 $subject->indicator(1),
 54 $subject->indicator(2),
 55 @newSubfields
 56);
 57 $subject->replace_with($newSubject);
 58 }
 59
 60 }
 61
 62 # output the potentially changed record as MARC.
 63 print $record->as_usmarc();
 64
 65 }

VALIDATING
The MARC::Record package has some extra goodies to allow you to validate records: MARC::Lint.
MARC::Lint provides an extensive battery of tests, and it also provides a framework for adding more.

Using MARC::Lint
Here is an example of using MARC::Lint to generate a list of errors present in a batch of records in a file
named ‘file.dat‘:
 1 ## Example V1
 2
 3 use MARC::Batch;
 4 use MARC::Lint;
 5
 6 my $batch = MARC::Batch->new(’USMARC’,’file.dat’);
 7 my $linter = MARC::Lint->new();
 8 my $counter = 0;
 9
 10 while (my $record = $batch->next()) {
 11
 12 $counter++;
 13
 14 ## feed the record to our linter object.
 15 $linter->check_record($record);
 16
 17 ## get the warnings...
 18 my @warnings = $linter->warnings();
 19
 20 ## output any warnings.
 21 if (@warnings) {
 22
 23 print "RECORD $counter\n";
 24 print join("\n",@warnings),"\n";
 25
 26 }
 27
 28 }

14 08 September 2004

pod2pdf Tutorial.pod

MARC::Lint is quite thorough, and will check the following when validating: presence of a 245 field,
repeatability of fields and subfields, valid use of subfield within particular fields, presence of indicators
and their values.

Customizing MARC::Lint
MARC::Lint makes no claim to check everything that might be wrong with a MARC record. In
practice, individual libraries may have their own idea about what is valid or invalid. For example, a
library may mandate that all MARC records with an 856 field should have a subfield z that reads
"Connect to this resource".
MARC::Lint does provide a framework for adding rules. It can be done using the object oriented
programming technique of inheritance. In short, you can create your own subclass of MARC::Lint, and
then use it to validate your records. Here‘s an example:
 1 ## Example V2
 2
 3 ## first, create our own subclass of MARC::Lint.
 4 ## should be saved in a file called MyLint.pm.
 5
 6 package MyLint;
 7 use base qw(MARC::Lint);
 8
 9 ## add a method to check that the 856
 10 ## fields contain a correct subfield z.
 11 sub check_856 {
 12
 13 ## your method is passed the MARC::Lint
 14 ## and MARC::Field objects for the record.
 15 my ($self,$field) = @_;
 16
 17 if ($field->subfield(’z’) ne ’Connect to this resource’) {
 18
 19 ## add a warning to our lint object.
 20 $self->warn("856 subfield z must read ’Connect to this resource’.");
 21
 22 }
 23
 24 }

Then create a separate program that uses your subclass to validate your MARC records. You‘ll need to
make sure your program is able to find your module (in this case, MyLint.pm)... this can be achieved by
putting both MyLint.pm and the following program in the same directory:
 1 ## Example V3
 2
 3 use MARC::Batch;
 4 use MyLint;
 5
 6 my $linter = MyLint->new();
 7 my $batch = MARC::Batch->new(’USMARC’,’file.marc’);
 8 my $counter = 0;
 9
 10 while (my $record = $batch->next()) {
 11
 12 $counter++;
 13
 14 ## check the record
 15 $linter->check_record($record);
 16
 17 ## get the warnings, and print them out
 18 my @warnings = $linter->warnings();
 19 if (@warnings) {
 20 print "RECORD $counter\n";

08 September 2004 15

Tutorial.pod pod2pdf

 21 print join("\n",@warnings),"\n";
 22 }
 23
 24 }

Notice how the call to check_record() at line 15 automatically calls the check_record in
MARC::Lint. The property of inheritance is what makes this happen. $linter is an instance of the
MyLint class, and MyLint inherits from the MARC::Lint class, which allows $linter to inherit all the
functionality of a normal MARC::Lint object plus the new functionality found in the check_856
method.
Notice also that we don‘t have to call check_856() directly. The call to check_record()
automatically looks for any check_XXX methods that it can call to verify the record. Pretty neat stuff.
If you‘ve added validation checks that you think could be of use to the general public, please share them
on the perl4lib mailing list, or become a developer and add them to the source!

SWOLLEN APPENDICES
Brian Eno fans might catch this reference to his autobiography which was comprised of a years worth of
diary entries plus extra topics at the end, and was entitled "A Year With Swollen Appendices". The
following section is a grab bag group of appendices. Many of them are not filled in yet; this is because
they are just ideas... so perhaps the appendices aren‘t that swollen yet. Feel free to suggest new ones, or
to fill these in.

Comparing Collections

Authority Records

URLs

ISBN/ISSNs

Call numbers

Subject headings
Suppose you have a batch of MARC records and you want to extract all the subject headings, generating
a report of how many times each subject heading appeared in the batch:
 1 use MARC::File::USMARC;
 2 use constant MAX => 20;
 3
 4 my %counts;
 5
 6 my $filename = shift or die "Must specify filename\n";
 7 my $file = MARC::File::USMARC->in($filename);
 8
 9 while (my $marc = $file->next()) {
 10 for my $field ($marc->field("6..")) {
 11 my $heading = $field->subfield(’a’);
 12
 13 # trailing whitespace / punctuation.
 14 $heading =~ s/[.,]?\s*$//;
 15
 16 # Now count it.
 17 ++$counts{$heading};
 18 }
 19 }
 20 $file->close();
 21
 22 # Sort the list of headings based on the count of each.
 23 my @headings = reverse sort { $counts{$a} <=> $counts{$b} } keys %counts;
 24
 25 # Take the top N hits...
 26 @headings = @headings[0..MAX-1];
 27

16 08 September 2004

pod2pdf Tutorial.pod

 28 # And print out the results.
 29 for my $heading (@headings) {
 30 printf("%5d %s\n", $counts{$heading}, $heading);
 31 }

Which will generate results like this:
 600 United States
 140 World War, 1939-1945
 78 Great Britain
 63 Afro-Americans
 61 Indians of North America
 58 American poetry
 55 France
 53 West (U.S.)
 53 Science fiction
 53 American literature
 50 Shakespeare, William
 48 Soviet Union
 46 Mystery and detective stories
 45 Presidents
 43 China
 40 Frontier and pioneer life
 38 English poetry
 37 Authors, American
 37 English language
 35 Japan

HTML

XML

Excel

Z39.50
Chris Biemesderfer was kind enough to contribute a short example of how to use MARC::Record in
tandem with Net::Z3950. Net::Z3950 is a CPAN module which provides an easy to use interface to the
Z39.50 protocol so that you can write programs that retrieve records from bibliographic database around
the world.
Chris’ program is a command line utility which you run like so:
 ./zm.pl 0596000278

where 0596000278 is an ISBN (for the 3rd edition of the Camel incidentally). The program will query
the Library of Congress Z39.50 server for the ISBN, and dump out the retrieved MARC record on the
screen. The program is designed to lookup multiple ISBNs if you separate them with a space. This is
just an example showing what is possible.
 1 #!/usr/bin/perl -w
 2
 3 # GET-MARC-ISBN -- Get MARC records by ISBN from a Z39.50 server
 4
 5 use strict;
 6 use Carp;
 7 use Net::Z3950;
 8 use MARC::Record;
 9
 10 exit if ($#ARGV < 0);
 11
 12 # We handle multiple ISBNs in the same query by assembling a
 13 # (potentially very large) search string with Prefix Query Notation
 14 # that ORs the ISBN-bearing attributes.
 15 #

08 September 2004 17

Tutorial.pod pod2pdf

 16 # For purposes of automation, we want to request batches of many MARC
 17 # records. I am not a Z39.50 weenie, though, and I don’t know
 18 # offhand if there is a limit on how big a PQN query can be...
 19
 20 my $zq = "\@attr 1=7 ". pop();
 21 while (@ARGV) { $zq = ’@or @attr 1=7 ’. pop() ." $zq" }
 22
 23 ## HERE IS THE CODE FOR Z3950 REC RETRIEVAL
 24 # Set up connection management structures, connect
 25 # to the server, and submit the Z39.50 query.
 26
 27 my $mgr = Net::Z3950::Manager->new(databaseName => ’voyager’);
 28 $mgr->option(elementSetName => "f");
 29 $mgr->option(preferredRecordSyntax => Net::Z3950::RecordSyntax::USMARC);
 30
 31 my $conn = $mgr->connect(’z3950.loc.gov’, ’7090’);
 32 croak "Unable to connect to server" if !defined($conn);
 33
 34 my $rs = $conn->search($zq);
 35
 36 my $numrec = $rs->size();
 37 print STDERR "$numrec record(s) found\n";
 38
 39 for (my $ii = 1; $ii <= $numrec; $ii++) {
 40
 41 # Extract MARC records from Z3950
 42 # result set, and load MARC::Record.
 43 my $zrec = $rs->record($ii);
 44 my $mrec = MARC::Record->new_from_usmarc($zrec->rawdata());
 45 print $mrec->as_formatted, "\n\n";
 46
 47 }

Databases
Here‘s a script that will do a Z39.50 query (using Chris Biemesderfer‘s zm.pl as a model), get a MARC
record back, and store it as a binary blob in a MySQL table of this structure:
 +---------------+---------------+------+-----+---------+----------------+
 | Field | Type | Null | Key | Default | Extra |
 +---------------+---------------+------+-----+---------+----------------+
TitleID	int(7)		PRI	NULL	auto_increment
RecLastMod	timestamp(14)	YES		NULL	
ISSN	text	YES		NULL	
RawMARCRecord	blob	YES		NULL	
 +---------------+---------------+------+-----+---------+----------------+

 1 #!/usr/bin/perl -w
 2
 3 # Script that reads in a file of ISSNs, queries a Z39.50 server,
 4 # and stores resulting records in a database. Limitations: Only
 5 # stores 1 records per ISSN.
 6 # Last updated 2004-09-08 Mark Jordan, mjordan@sfu.ca
 7
 8 use strict;
 9 use Carp;
 10 use Net::Z3950;
 11 use MARC::Record;
 12 use DBI;
 13
 14 # DB connection settings

18 08 September 2004

pod2pdf Tutorial.pod

 15 my $host = "somehost";
 16 my $user = "someuser";
 17 my $password = "somepass";
 18 my $database = "somedb";
 19
 20 # Input file (one ISSS/line)
 21 my $InputFile = $ARGV[0];
 22
 23 # Prepare list of ISSNs to search
 24 my @ISSNs;
 25 open (INPUT, "< $InputFile") or die "Can’t find input file\n";
 26 while (<INPUT>) { chomp $_; push (@ISSNs, $_); }
 27 close INPUT;
 28
 29
 30 # Set up connection management structures, connect to the server,
 31 # and submit the Z39.50 query.
 32 my $mgr = Net::Z3950::Manager->new(databaseName => ’voyager’);
 33 $mgr->option(elementSetName => "f");
 34 $mgr->option(preferredRecordSyntax => Net::Z3950::RecordSyntax::USMARC);
 35 my $conn = $mgr->connect(’z3950.loc.gov’, ’7090’);
 36 croak "Unable to connect to server" if !defined($conn);
 37
 38
 39 my $handle = DBI->connect("DBI:mysql:$database:$host","$user","$password")
 40 or die $DBI::errstr;
 41
 42 foreach my $ISSN (@ISSNs) {
 43 my $zq = "\@attr 1=8 ". $ISSN;
 44 my $rs = $conn->search($zq);
 45 my $numrec = $rs->size();
 46 if ($numrec == 0) {
 47 print "Record for ISSN $ISSN not found, moving to next ISSN...\n";
 48 next;
 49 } else {
 50 # Extract MARC record from the result set, and invoke MARC::Record
 51 my $zrec = $rs->record(1);
 52 my $mrec = MARC::Record->new_from_usmarc($zrec->rawdata());
 53 my $rawdata = $zrec->rawdata();
 54 $rawdata = $handle->quote ($rawdata);
 55 # Add to db
 56 my $SQL = "insert into Titles values (NULL,NULL,’$ISSN’,$rawdata)";
 57 my $cursor = $handle->prepare($SQL);
 58 $cursor->execute;
 59 print "Record for ISSN $ISSN added to database...\n";
 60 $cursor->finish;
 61 }
 62 }
 63 $handle->disconnect;
 64
 65 __END__

If you want to pull records out of the same database and do something with them, here‘s a template
script:
 1 #!/usr/bin/perl -w
 2
 3 # Script that gets MARC records (in blobs) from a database.
 4 # Last updated 2004-09-08 Mark Jordan, mjordan@sfu.ca

08 September 2004 19

Tutorial.pod pod2pdf

 5
 6 use strict;
 7 use MARC::Record;
 8 use DBI;
 9
 10 # DB connection settings
 11 my $mysql_host = "somehost";
 12 my $mysql_user = "someuser";
 13 my $mysql_password = "somepass*";
 14 my $mysql_database = "somedb";
 15
 16
 17 my $handle = DBI->connect("DBI:mysql:$mysql_database:$mysql_host",
 18 "$mysql_user","$mysql_password") or die $DBI::errstr;
 19
 20 my $SQL = "select * from Titles";
 21 my $cursor = $handle->prepare($SQL);
 22 $cursor->execute;
 23
 24 while (my @Records = $cursor->fetchrow_array) {
 25 my $RawMARC = $Records[3];
 26 my $mrec = MARC::Record->new_from_usmarc($RawMARC);
 27 # Print out the title
 28 print $mrec->title , "\n";
 29 }
 30
 31 $cursor->finish;
 32 $handle->disconnect;
 33
 34 __END__

Procite/Endnote

CONTRIBUTORS
Many thanks to all the contributors who have made this document possible.

 Chris Biemesderfer <chris@seagoat.com>

 Morbus Iff <morbus@disobey.com>

 Mark Jordan <mjordan@sfu.ca>

 Andy Lester <andy@petdance.com>

 Christopher Morgan <morgan@acm.org>

 Shashi Pinheiro <SPinheiro@utsa.edu>

 Jackie Shieh <jshieh@umich.edu>

 Ed Summers <ehs@pobox.com>

20 08 September 2004

	Table of Contents
	NAME
	SYNOPSIS
	INTRODUCTION
	What is MARC?
	What is this Tutorial?
	History of MARC on CPAN
	Brief Overview of MARC Classes
	MARC::Batch
	MARC::Field
	MARC::Lint
	MARC::Record
	MARC::Doc::Tutorial
	MARC::File
	MARC::File::MicroLIF
	MARC::File::USMARC

	Help Wanted!

	READING
	Reading a record from a file
	Iterating through a batch file
	Checking for errors
	Recovering from errors
	Looking at a field
	Looking at repeatable fields
	Looking at a set of related fields
	Looking at all the fields in a record

	CREATING
	Creating a record

	WRITING
	Writing records to a file
	Debugging with as_formatted()
	Debugging with marcdump()

	UPDATING
	Adding a field
	Preserving field order
	Deleting a field
	Changing existing fields
	Updating subfields and indicators
	Changing a record`s leader
	Modifying fields without indicators
	Reordering subfields
	Updating subject subfield x to subfield v

	VALIDATING
	Using MARC::Lint
	Customizing MARC::Lint

	SWOLLEN APPENDICES
	Comparing Collections
	Authority Records
	URLs
	ISBN/ISSNs
	Call numbers
	Subject headings
	HTML
	XML
	Excel
	Z39.50
	Databases
	Procite/Endnote

	CONTRIBUTORS

