
POD Translation
by pod2pdf
ajf@afco.demon.co.uk

Tutorial.pod

Title Page Tutorial.pod

17 November 2003 Fly leaf

Table of Contents
Tutorial.pod

NAME 1
SYNOPSIS 1
INTRODUCTION 1

What is MARC? 1
What is this Tutorial? 1
History of MARC on CPAN 1
Brief Overview of MARC Classes 1

MARC::Batch 1
MARC::Field 2
MARC::Lint 2
MARC::Record 2
MARC::Doc::Tutorial 2
MARC::File 2
MARC::File::MicroLIF 2
MARC::File::USMARC 2

Help Wanted! 2
READING 2

Reading a record from a file 2
Iterating through a batch file 2
Checking for errors 3
Recovering from errors 3
Looking at a field 4
Looking at repeatable fields 4
Looking at a set of related fields 5
Looking at all the fields in a record 5

CREATING 6
Creating a record 6

1 6
2 6
3 6
4 6

Creating a record from raw MARC data in a variable 6
WRITING 7

Writing records to a file 7
Debugging with as_formatted() 7
Debugging with marcdump() 8

UPDATING 8
Adding a field 8
Preserving field order 9
Deleting a field 9
Changing existing fields 10

1 10
2 10
3 10
4 10

Updating subfields and indicators 11
Changing a record‘s leader 11
Modifying fields without indicators 12
Reordering subfields 12

1 12
2 12
3 12

17 November 2003 i

Tutorial.pod Table of Contents

4 13
5 13

Updating subject subfield x to subfield v 13
VALIDATING 14

Using MARC::Lint 15
Customizing MARC::Lint 15

SWOLLEN APPENDICES 16
Comparing Collections 17
Authority Records 17
URLs 17
ISBN/ISSNs 17
Call numbers 17
Subject headings 17
HTML 18
XML 18
Excel 18
Databases 18
Z39.50 18
Procite/Endnote 19

CONTRIBUTORS 19

ii 17 November 2003

pod2pdf Tutorial.pod

NAME
MARC::Doc::Tutorial - A documentation-only module for new users of MARC::Record

SYNOPSIS

 perldoc MARC::Doc::Tutorial

INTRODUCTION

What is MARC?
The MAchine Readable Cataloging format was designed by the Library of Congress in the late 1960s in
order to allow libraries to convert their card catalogs into a digital format. The advantages of having
computerized card catalogs were soon realized, and now MARC is being used by all sorts of libraries
around the world to provide computerized access to their collections. MARC data in transmission format
is optimized for processing by computers, so it‘s not very readable for the normal human. For more
about the MARC format, visit the Library of Congress at http://www.loc.gov/marc/

What is this Tutorial?
The document you are reading is a beginners guide to using Perl to processing MARC data, written in
the ‘cookbook’ style. Inside, you will find recipes on how to read, write, update and convert MARC
data using the MARC::Record CPAN package. As with any cookbook, you should feel free to dip in at
any section and use the recipe you find interesting. If you are new to Perl, you may want to read from
the beginning.
The document you are reading is distributed with the MARC::Record package, however in case you are
reading it somewhere else, you can find the latest version at CPAN:
http://www.cpan.org/modules/by-module/MARC/. You‘ll notice that some sections aren‘t filled in yet,
which is a result of this document being a work in progress. If you have ideas for new sections please
make a suggestion to perl4lib: http://www.rice.edu/perl4lib/.

History of MARC on CPAN
In 1999, a group of developers began working on MARC.pm to provide a Perl module for working with
MARC data. MARC.pm was quite successful since it grew to include many new options that were
requested by the Perl/library community. However, in adding these features the module swiftly outgrew
its own clothes, and maintenance and addition of new features became extremely difficult. In addition,
as libraries began using MARC.pm to process large MARC data files (1000 records) they noticed that
memory consumption would skyrocket. Memory consumption became an issue for large batches of
records because MARC.pm‘s object model was based on the ‘batch’ rather than the record... so each
record in the file would often be read into memory. There were ways of getting around this, but they
were not obvious. Some effort was made to reconcile the two approaches (batch and record), but with
limited success.
In mid 2001, Andy Lester released MARC::Record and MARC::Field which provided a much simpler
and maintainable package for processing MARC data with Perl. As its name suggests, MARC::Record
treats an individual MARC record as the primary Perl object, rather than having the object represent a
given set of records. Instead of forking the two projects, the developers agreed to encourage use of the
MARC::Record framework, and to work on enhancing MARC::Record rather than extending MARC.pm
further. Soon afterwards, MARC::Batch was added, which allows you to read in a large data file without
having to worry about memory consumption.

Brief Overview of MARC Classes
The MARC::Record package is made up of several separate packages. This can be somewhat confusing
to people new to Perl, or Object Oriented Programming. However this framework allows easy
extension, and is built to support new input/output formats as their need arises. For a good introduction
to using the object oriented features of Perl, see the perlboot documentation that came with your version
of Perl:
 perldoc perlboot

Here are the packages that get installed when you install MARC::Record:

MARC::Batch
A convenience class for accessing MARC data contained in an external file.

17 November 2003 1

Tutorial.pod pod2pdf

MARC::Field
An object for representing the indicators and subfields of a single MARC field.

MARC::Lint
An extension to check the validity of MARC records.

MARC::Record
This primary class represents a MARC record, being a container for multiple MARC::Field
objects.

MARC::Doc::Tutorial
This document!

MARC::File
A superclass for representing files of MARC data.

MARC::File::MicroLIF
A subclass of MARC::File for working with data encoded in the MicroLIF format.

MARC::File::USMARC
A subclass of MARC::File for working with data encoded in the USMARC format.

Help Wanted!
It‘s already been mentioned but it‘s worth mentioning again: MARC::Doc::Tutorial is a work in
progress, and you are encouraged to submit any suggestions for additional recipes via the perl4lib
mailing list at http://www.rice.edu/perl4lib . Also, the development group is always looking for
additional developers with good ideas; if you are interested you can sign up at SourceForge:
http://sourceforge.net/projects/marcpm/.

READING

Reading a record from a file
Let‘s say you have a USMARC record in a file called ‘file.dat’ and you‘d like to read in the record and
print out its title.
 1 ## Example 1
 2
 3 ## create a MARC::Batch object.
 4 use MARC::Batch;
 5 my $batch = MARC::Batch(’USMARC’, ’file.dat’);
 6
 7 ## get a MARC record from the MARC::Batch object.
 8 ## $record will be a MARC::Record object.
 9 my $record = $batch->next();
 10
 11 ## print the title contained in the record.
 12 print $record->title(),"\n";

Using the distribution‘s ‘t/camel.usmarc‘, your result should be:
 ActivePerl with ASP and ADO / Tobias Martinsson.

Iterating through a batch file
Now imagine that ‘file.dat’ actually contains multiple records and we want to print the title for all of
them. Our program doesn‘t have to change very much at all: we just need to add a loop around our call
to next().
 1 ## Example 2
 2
 3 ## create a MARC::Batch object.
 4 use MARC::Batch;
 5 my $batch = MARC::Batch->new(’USMARC’,’file.dat’);
 6
 7 while (my $record = $batch->next()) {
 8
 9 ## print the title contained in the record.
 10 print $record->title(),"\n";

2 17 November 2003

pod2pdf Tutorial.pod

 11
 12 }

The call to the next() method at line 7 returns the next record from the file. next() returns undef
when there are no more records left in the file, which causes the while loop to end. This is a useful
idiom for reading in all the records in a file. Your results with ‘camel.usmarc’ should be:
 ActivePerl with ASP and ADO / Tobias Martinsson.
 Programming the Perl DBI / Alligator Descartes and Tim Bunce.
 .
 .
 .
 Cross-platform Perl / Eric F. Johnson.

Checking for errors
It is a good idea to get in the habit of checking for errors. MARC/Perl has been designed to help you do
this. Calls to next() when iterating through a batch file will return undef when there are no more
records to return... AND when an error was encountered. You probably want to make sure that you
didn‘t abruptly stop reading a batch file because of an error.
 1 ## Example 3
 2
 3 ## create a MARC::Batch object.
 4 use MARC::Batch;
 5 my $batch = MARC::Batch->new(’USMARC’,’file.dat’);
 6
 7 ## get a marc record from the MARC::Batch object.
 8 ## $record will be a MARC::Record object.
 9 while (my $record = $batch->next()) {
 10 print $record->title(),"\n";
 11 }
 12
 13 ## make sure there weren’t any problems.
 14 if (my @warnings = $batch->warnings()) {
 15 print "\nWarnings were detected!\n", @warnings;
 16 }

The call to warnings() at line 14 will retrieve any warning messages and store them in the
@warnings. This allows you to detect when next() has aborted prematurely (before the end of the
file has been reached). When a warning is detected, an explanation is sent to STDERR. By introducing an
error into ‘camel.usmarc‘, we‘ll receive the following output to STDOUT:
 Warnings were detected!
 Invalid indicators "a0" forced to blanks in record 1 for tag 245

Recovering from errors
You may want to keep reading a batch file even after an error has been encountered. If so, you will want
to turn strict mode off using the strict_off() method. You can also prevent warnings from being
printed to STDERR using the warnings_off() method.
 1 ## Example 4
 2
 3 use MARC::Batch;
 4 my $batch = MARC::Batch->new(’USMARC’, ’file.dat’);
 5 $batch->strict_off();
 6
 7 while (my $record = $batch->next()) {
 8 print $record->title(),"\n";
 9 }
 10
 11 ## make sure there weren’t any problems.
 12 if (my @warnings = $batch->warnings()) {
 13 print "\nWarnings were detected!\n", @warnings;

17 November 2003 3

Tutorial.pod pod2pdf

 14 }

Introducing a second error to the ‘camel.usmarc’ file gives the following:
 ActivePerl with ASP and ADO / Tobias Martinsson.
 Programming the Perl DBI / Alligator Descartes and Tim Bunce.
 .
 .
 .
 Cross-platform Perl / Eric F. Johnson.

 Warnings were detected!
 Invalid indicators "a0" forced to blanks in record 1 for tag 245
 Invalid indicators "a0" forced to blanks in record 5 for tag 245

Use of strict_off() allows you to continue reading after an error is encountered. By default, strict
is on as a safety precaution to prevent you from using corrupt MARC data. Once off, you can turn both
strict and warnings back on again with the strict_on() and warnings_on() methods.

Looking at a field
Our previous examples use MARC::Record‘s title() method to easily access the 245 field... but you
probably will want to write programs that access lots of other MARC fields. MARC::Record‘s
field() method gives you complete access the data found in any MARC field. The field() method
returns a MARC::Field object which can be used to access the data, indicators, and even the individual
subfields. Our next example shows how this is done.
 1 ## Example 5
 2
 3 ## open a file.
 4 use MARC::Batch;
 5 my $batch = MARC::Batch->new(’USMARC’,’file.dat’);
 6
 7 ## read a record.
 8 my $record = $batch->next();
 9
 10 ## get the 100 field as a MARC::Field object.
 11 my $field = $record->field(’100’);
 12 print "The 100 field contains: ",$field->as_string(),"\n";
 13 print "The 1st indicator is ",$field->indicator(1),"\n";
 14 print "The 2nd indicator is ",$field->indicator(2),"\n";
 15 print "Subfield d contains: ",$field->subfield(’d’),"\n";

Which results in:
 The 100 field contains: Martinsson, Tobias, 1976-
 The 1st indicator is 1
 The 2nd indicator is
 Subfield d contains: 1976-

As before, use a while loop to iterate through all the records in a batch.

Looking at repeatable fields
So how do you retrieve data from repeatable fields? The field() method can help you with this as
well. In our previous example‘s line 11, the field() method was used in a scalar context, since the
result was being assigned to the variable $field. However in a list context field() will return all
the fields in the record of that particular type. For example:
 1 ## Example 6
 2
 3 use MARC::Batch;
 4 my $file = MARC::Batch->new(’USMARC’,’file.dat’);
 5 my $record = $batch->next();
 6

4 17 November 2003

pod2pdf Tutorial.pod

 7 ## get all the 650 fields (list context)
 8 my @fields = $record->field(’650’);
 9
 10 ## examine each 650 field and print it out
 11 foreach my $field (@fields) {
 12 print $field->as_string(),"\n";
 13 }

Which prints out the following for the first record of ‘camel.usmarc‘:
 Active server pages.
 ActiveX.

Looking at a set of related fields
field() also allows you to retrieve similar fields using ’.’ as a wildcard. For example, this
functionality allows you to retrieve all the title fields in one shot:
 1 ## Example 7
 2
 3 use MARC::Batch;
 4 my $batch = MARC::Batch->new(’USMARC’,’file.dat’);
 5 my $record = $batch->next();
 6
 7 foreach my $field ($record->field(’2..’)) {
 8 print $field->tag(),’ contains ’,$field->as_string(),"\n";
 9 }

Notice the shorthand in line 7 which compacts lines 7-13 of our previous example. Instead of storing the
fields in an array, the field() still returns a list in the for loop. Line 8 uses the tag() method
which returns the tag number for a particular MARC field - which is useful when you aren‘t certain what
tag you are dealing with. Sample output from this recipe:
 245 contains ActivePerl with ASP and ADO / Tobias Martinsson.
 260 contains New York : John Wiley & Sons, 2000.

You can also return all tags for a specific record by using ’...’ in field. See also the next recipe.

Looking at all the fields in a record
The last example in this section illustrates how to retrieve all the fields in a record using the fields()
method. This method is similar to passing ’...’ as a wildcard (see previous recipe).
 1 ## Example 8
 2
 3 use MARC::Batch;
 4 my $file = MARC::Batch->new(’USMARC’,’file.dat’);
 5 my $record = $batch->next();
 6
 7 ## get all of the fields using the fields() method
 8 my @fields = $record->fields();
 9
 10 ## print out the tag, the indicators and the field contents
 11 foreach my $field (@fields) {
 12 print
 13 $field->tag(), " ",
 14 defined $field->indicator(1) ? $field->indicator(1) : "",
 15 defined $field->indicator(2) ? $field->indicator(2) : "",
 16 " ", $field->as_string, " \n";
 17 }

The above code would print the following for the first record of ‘camel.usmarc‘:
 001 fol05731351
 003 IMchF
 .

17 November 2003 5

Tutorial.pod pod2pdf

 .
 .
 300 xxi, 289 p. : ill. ; 23 cm. + 1 computer laser disc (4 3/4 in.)
 500 "Wiley Computer Publishing."
 650 0 Perl (Computer program language)
 630 00 Active server pages.
 630 00 ActiveX.

CREATING
The examples in the section 1 covered how to read in existing USMARC data in a file. Section 2 will
show you how to create a MARC record from scratch. The techniques in this section would allow you to
write programs that create MARC records that could then be loaded into an online catalog, or sent to a
third party.

Creating a record
To create a record you need to:

1 Create a MARC::Record object.

2 Add a leader to the record.

3 Create MARC::Field objects for each field you want to have in the record.

4 Add each of the MARC::Field objects to the MARC::Record object.

For example:

 1 ## Example 8
 2
 3 ## create a MARC::Record object
 4 use MARC::Record;
 5 my $record = MARC::Record->new();
 6
 7 ## add the leader to the record
 8 $record->leader(’00903pam 2200265 a 4500’);
 9
 10 ## create an author field
 11 my $author = MARC::Field->new(
 12 ’100’,1,’’,
 13 a => ’Logan, Robert K.’,
 14 d => ’1939-’
 15);
 16 $record->append_fields($author);
 17
 18 ## create a title field
 19 my $title = MARC::Field->new(
 20 ’245’,’1’,’4’,
 21 a => ’The alphabet effect /’,
 22 c => ’Robert K. Logan.’
 23);
 24 $record->append_fields($title);

The key to creating records from scratch is to use the append_fields() method, which adds a field to the
end of the record. Since each field gets added at the end it‘s up to you to order the fields the way you
want. insert_fields_before() and insert_fields_after() are similar methods that allow you to define where
the field gets added. These methods are covered in more detail below.

Creating a record from raw MARC data in a variable
The above examples illustrated how to create a record from MARC data stored on disk. However you
may have the raw USMARC data stored in a variable and want to create a MARC::Record from it. This
situation can arise when you are able to pull the MARC data out of a database, or using some input
method other that the filesystem. If you ever find yourself in this position take a look at

6 17 November 2003

pod2pdf Tutorial.pod

MARC::Record‘s new_from_usmarc() method which allows you to create a MARC::Record object from
the USMARC data stored in a variable.

WRITING
Sections 1 and 2 showed how to read and create USMARC data. Once you know how to read and create
it becomes important to know how to write the USMARC data to disk in order to save your work. In
this example we will create a new record and save it to a file called ‘record.dat’.

Writing records to a file

 1 ## Example 9
 2
 3 ## create MARC object
 4 use MARC::Record;
 5 my $record = MARC::Record->new();
 6 $record->leader(’00903pam 2200265 a 4500’);
 7 my $author = MARC::Field->new(’100’,’1’,’’,
 8 a=>’Logan, Robert K.’, d=>’1939-’
 9);
 10 my $title = MARC::Field->new(’245’,’1’,’4’,
 11 a=>’The alphabet effect /’, c=>’Robert K. Logan.’
 12);
 13 $record->append_fields($author,$title);
 14
 15 ## open a filehandle to write to ’file.dat’
 16 open(OUTPUT, ’> record.dat’);
 17 print OUTPUT $record->as_usmarc();
 18 close(OUTPUT);

The as_usmarc() method call at line 17 returns a scalar value which is the raw USMARC data for
$record. The raw data is then promptly printed to the OUTPUT file handle. If you want to output
multiple records to a file you could simply repeat the process at line 17 for the additional records.
Note to the curious: the as_usmarc() method is actually an alias to the MARC::File::USMARC::encode()
method. Having separate encode() methods is a design feature of the MARC class hierarchy since it
allows extensions to be built that translate MARC::Record objects into different data formats.

Debugging with as_formatted()
Since raw USMARC data isn‘t very easy for humans to read, it is often useful to be able to see the
contents of your MARC::Record object represented in a ‘pretty’ way for debugging purposes. If you
have MARC::Record object you‘d like to pretty-print use the as_formatted() method.

 1 ## Example 10
 2
 3 ## create MARC object
 4 use MARC::Record;
 5 my $record = MARC::Record->new();
 6 $record->leader(’00903pam 2200265 a 4500’);
 7 $record->append_fields(
 8 MARC::Field->new(’100’,’1’,’’,
 9 a=>’Logan, Robert K.’, d=>’1939-’
 10),
 11 MARC::Field->new(’245’,’1’,’4’,
 12 a=>’The alphabet effect /’, c=>’Robert K. Logan.’
 13),
 14);
 15
 16 ## pretty print the record
 17 print $record->as_formatted();

17 November 2003 7

Tutorial.pod pod2pdf

Unlike example 9 this code will pretty print the contents of the newly created record to the screen.
Notice on lines to how you can add a list of new fields by creating MARC::Field objects within a call to
append_fields().

Debugging with marcdump()
If you have written USMARC data to a file (as in example 9) and you would like to verify that the data
is stored correctly you can use the marcdump command line utility that was installed when you installed
the MARC::Record package.
 % marcdump record.dat
 record.dat
 LDR 00122pam 2200049 a 4500
 100 1 _aLogan, Robert K.

_d1939-
 245 14 _aThe alphabet effect /
 _cRobert K. Logan.

 Recs Errs Filename
 ----- ----- --------
 1 0 record.dat

As you can see this command results in the record being pretty printed to your screen (STDOUT). It is
useful for verifying your USMARC data after it has been stored on disk. More details about debugging
are found later in VALIDATING.

UPDATING
Now that you know how to read, write and create MARC data you have the tools you need to update or
edit exiting MARC data. Updating MARC data is a common task for library catalogers. Sometimes
there are huge amounts of records that need to be touched up...and while the touch ups are very detail
oriented they are also highly repetitive. Luckily computers are tireless, and not very prone to error
(assuming the programmer isn‘t).
When libraries receive large batches of MARC records for electronic text collections such as
NetLibrary, Making of America, or microfiche sets such as Early American Imprints the records are
often loaded into an online system, and then the system is used to update the records. Unfortunately not
all these systems are created equal, and catalogers have to spend a great deal of time touching up each
individual record. An alternative would be to process the records prior to import, and then once in the
system the records would not need touching up. This scenario would save a great deal of time for the
cataloger who would be liberated to spend their time doing original cataloging...which computers are
notably bad at!

Adding a field
Imagine that you have a batch of records in a file called ‘file.dat’ and that you would like to add a local
note to (590) to each record and save it as ‘file_2.dat’.

 1 ## Example 11
 2
 3 ## create our MARC::Batch object
 4 use MARC::Batch;
 5 my $batch = MARC::Batch->new(’USMARC’,’file.dat’);
 6
 7 ## open a file handle to write to
 8 open(OUT,’>new.dat’);
 9
 10 ## read in each record
 11 while (my $record = $batch->next()) {
 12
 13 ## add a 590 field
 14 $record->append_fields(
 15 MARC::Field->new(’590’,’’,’’,a=>’Access provided by Enron.’)

8 17 November 2003

pod2pdf Tutorial.pod

 16);
 17
 18 print OUT $record->as_usmarc();
 19
 20 }
 21
 22 close(OUT);

Notice on lines 3-5 how MARC::Batch is used instead of MARC::File::USMARC. MARC::Batch
provides an alternate way of reading records from files, and provides a uniform interface to the different
MARC::File modules.

Preserving field order
As its name suggests append_fields() will add the 590 field to the end of the record. If you want to
preserve a particular order you can use the insert_fields_before() and insert_fields_after(). In order to
use these you need to locate the field you want to insert before or after. Here is an example:
 1 ## Example 12
 2
 3 use MARC::Batch;
 4 my $batch = MARC::Batch->new(’USMARC’,’file.dat’);
 5 open(OUT,’>new.dat’);
 6
 7 ## read in each record
 8 while (my $record = $batch->next()) {
 9
 10 ## find the first tag after 590
 11 my $before;
 12 foreach ($record->fields()) {
 13 $before = $_;
 14 last if $_->tag() > 590;
 15 }
 16
 17 ## create the 590 field
 18 my $new =
 19 MARC::Field->new(’590’,’’,’’,a=>’Access provided by Enron.’);
 20
 21 ## insert our 590 field
 22 $record->insert_fields_before($before,$new);
 23
 24 print OUT $record->as_usmarc();
 25
 26 }

insert_fields_after() works in a similar fashion to insert_fields_before() but with the expected change of
behavior.

Deleting a field
You can also delete fields that you don‘t want. But you will want to check that the field contains what
you expect before deleting it. Let‘s say Enron has gone out of business and the 590 field needs to be
deleted.

 1 ## Example 13
 2
 3 use MARC::Batch;
 4 my $batch = MARC::Batch->new(’USMARC’,’new.dat’);
 5 open(OUT,’>newer.dat’);
 6
 7 while (my $record = $batch->next()) {

17 November 2003 9

Tutorial.pod pod2pdf

 8
 9 ## get the 590 record
 10 my $field = $record->field(’590’);
 11
 12 ## if there is a 590 field AND it has the word Enron in it
 13 if ($field and $field->as_string() =~ /Enron/i) {
 14
 15 ## delete it!
 16 $record->delete_field($field);
 17
 18 }
 19
 20 ## output possibly modified record to our new file
 21 print OUT $record->as_usmarc();
 22
 23 }

The 590 field is retrieved on line 8; but notice how we check that we actually got a 590 field in $field,
and that it contains the word ‘Enron’ before we delete it. You need to pass delete_field() a MARC::Field
object that can be retrieved with the field() method.

Changing existing fields
Perhaps rather than adding or deleting a field you need to modify an existing field. This is achieved in
several steps:

1 Read in the MARC record that you want to update.

2 Retrieve the field you want to update.

3 Call the field‘s update() method or replace_with() method to modify the contents of the field.

4 Save the record.

Below is an example of updating any existing 590 field‘s containing the word ‘enron’ to indicate that
access is now provided through Arthur Andersen.

 1 ## Example 14
 2
 3 use MARC::Batch;
 4 my $batch = MARC::Batch->new(’USMARC’,’new.dat’);
 5 open(OUT,’>newer.dat’);
 6
 7 while (my $record = $batch->next()) {
 8
 9 ## look for and a 590 field containing ’enron’
 10 my $field = $record->field(’590’);
 11 if ($field and $field->as_string =~ /enron/i) {
 12
 13 ## create a new 590 field
 14 my $new_field = MARC::Field->new(
 15 ’590’,’’,’’,
 16 a => ’Access provided by Arthur Andersen.’
 17);
 18
 19 ## replace existing 590 field with the our new one
 20 $field->replace_with($new_field);
 21
 22 }
 23
 24 ## print out our (possibly) modified record
 25 print OUT $record->as_usmarc();

10 17 November 2003

pod2pdf Tutorial.pod

 26
 27 }

In this example we used MARC::Field‘s method replace_with() to replace an existing field in the record
with a new field that we created. To use replace_with() you need to retrieve the field you want to
replace from a MARC::Record object (line 7), create a new field to replace the existing one with (lines
13-17), and then call the existing field‘s replace_with() method passing the new field as an argument
(lines 19-20). You must pass replace_with() a valid MARC::Field object for things to work.

Updating subfields and indicators
If you‘d rather not replace an existing field with a new one, you can also edit the contents of the field
itself using the update() method. Let‘s say you‘ve got a batch of records and you want to make sure that
the 2nd indicator for the 245 field is properly set for titles that begin with ‘The’. The 2nd indicator
should be ‘4’ for titles beginning with ‘The’.

 1 ## Example 15
 2
 3 use MARC::Batch;
 4 my $batch = MARC::Batch->new(’USMARC’,’file.dat’);
 5 open(OUT,’>new.dat’);
 6
 7 while (my $record = $batch->next()) {
 8
 9 ## retrieve the 245 record
 10 my $field_245 = $record->field(’245’);
 11
 12 ## if we got the 245 and it starts with ’The’
 13 if ($field_245 and $field_245->as_string() =~ /^The /) {
 14
 15 ## if the 2nd indicator isn’t 4 we need to update
 16 if ($field_245->indicator(2) != 4) {
 17 $field_245->update(ind2 => 4);
 18 }
 19
 20 }
 21
 22 print OUT $record->as_usmarc();
 23
 24 }

The call to update() at line 17 sets the second indicator of the existing 245 field to 4. In a similar fashion
you can also update individual or multiple subfields.
 $field_245->update(a => ’History of the World :’, b => ’part 1’);

But beware, you can only update the first occurrence of a subfield using update(). If you need to do more
finer grained updates you are advised to build a new field and replace the existing field with
replace_with().

Changing a record‘s leader
This procedure works for fields, but editing the leader requires that you use the leader() method. When
called with no arguments leader() will return the current leader, and when you pass a scalar value as an
argument the leader will be set to this value. This example shows how you might want to update position
6 of a records leader to reflect that the record is for a computer file.

 1 ## Example 16
 2
 3 use MARC::Batch;

17 November 2003 11

Tutorial.pod pod2pdf

 4 my $batch = MARC::Batch->new(’USMARC’,’file.dat’);
 5 open(OUT,’>new.dat’);
 6 my $record = $batch->next();
 7
 8 ## get the current leader
 9 my $leader = $record->leader();
 10
 11 ## replace what is in position 6 with ’m’
 12 substr($leader,6,1) = ’m’;
 13
 14 ## update the leader
 15 $record->leader($leader);
 16
 17 ## save the record to a file
 18 print OUT $record->as_usmarc();

Modifying fields without indicators
MARC::Record and MARC::Field are smart and know that you don‘t have field indicators with tags less
than 010. Here‘s an example of updating/adding an 005 field to indicate a new transaction time. For a
little pizzazz we use Perl‘s localtime() to generate the data we need for this field.
 1 ## Example 17
 2
 3 use MARC::Batch;
 4 my $batch = MARC::Batch->new(’USMARC’,’file.dat’);
 5 open(OUT,’>new.dat’);
 6
 7 while (my $record = $batch->next()) {
 8
 9 ## see if there is a 005 field
 10 my $field_005 = $record->field(’005’);
 11
 12 ## delete it if we found it
 13 $record->delete_field($field_005) if $field_005;
 14
 15 ## figure out the contents of our new 005 field
 16 my ($sec,$min,$hour,$mday,$mon,$year) = localtime();
 17 $year += 1900;
 18 $mon += 1;
 19 my $datetime = sprintf("%4d%02d%02d%02d%02d%02d.0",
 20 $year,$mon,$mday,$hour,$min,$sec);
 21
 22 ## create a new 005 field using our new datetime
 23 $record->append_fields(MARC::Field->new(’005’,$datetime));
 24
 25 ## save record to a file
 26 print OUT $record->as_usmarc();
 27
 28 }

Reordering subfields
You may find yourself in the situation where you would like to programmatically reorder, and possibly
modify subfields in a particular field. For example, imagine that you have a batch of records that have
856 fields which contain subfields z, u, and possibly subfield 3... in any order! Now imagine that you‘d
like to standardize the subfield z, and reorder them so that subfield 3 precedes subfield z, which
precedes subfield u. This is tricky but can be done in the following manner:

1 Read in a record

2 Extract the existing 856 field.

3

12 17 November 2003

pod2pdf Tutorial.pod

Build a new 856 field based on the existing field.

4 Replace the existing 856 field with the new one.

5 Save our modified record.

Here is the example in detail:
 1 ## Example 18
 2
 3 use MARC::Batch;
 4 my $batch = MARC::Batch->new(’USMARC’,’856.dat’);
 5 open(OUT,’>856_new.dat’);
 6
 7 while (my $record = $batch->next()) {
 8
 9 my $existing = $record->field(’856’);
 10
 11 ## make sure the record has an 856 field we can edit
 12 if ($existing) {
 13
 14 ## now we’re going to build a list of our new subfields (in order)
 15 my @subfields = ();
 16
 17 ## if the 856 field has a subfield 3 add it
 18 if (defined($existing->subfield(’3’))) {
 19 push(@subfields,’3’,$existing->subfield(’3’));
 20 }
 21
 22 ## now add subfields z and u
 23 push(@subfields,’z’,’Access restricted’,
 24 ’u’,$existing->subfield(’u’));
 25
 26 ## create a new 856 field using the new reordered subfields
 27 my $new = MARC::Field->new(
 28 ’856’, $existing->indicator(1), $existing->indicator(2), @subfields
 29);
 30
 31 ## replace the existing subfield with our new one
 32 $existing->replace_with($new);
 33
 34 }
 35
 36 ## write out the record
 37 print OUT $record->as_usmarc();
 38
 39 }

Updating subject subfield x to subfield v
As a somewhat more complicated example you may find yourself wanting to update the last subfield x in
a 650 field to be a subfield v instead. With the MARC::Field::subfields() and
MARC::Field::replace_with() methods and some fancy footwork this can be done relatively easily.
 1 ## Example 19
 2
 3 use MARC::Batch;
 4 use Data::Dumper;
 5
 6 my $file = shift;
 7
 8 my $batch = MARC::Batch->new(’USMARC’, $file);
 9 while (my $record = $batch->next()) {
 10
 11 # go through all 6XX fields in the record

17 November 2003 13

Tutorial.pod pod2pdf

 12 foreach my $subject ($record->field(’6..’)) {
 13
 14 # extract subfields as an array of array refs
 15 my @subfields = $subject->subfields();
 16
 17 # setup an array to store our new field
 18 my @newSubfields = ();
 19
 20 # a flag to indicate that we found an subfield x
 21 my $foundX = 0;
 22
 23 # use pop() to read the subfields backwards
 24 while (my $subfield = pop(@subfields)) {
 25
 26 # for convenience pull out the subfield code and data from
 27 # the array ref
 28 my ($code,$data) = @$subfield;
 29
 30 # if the subfield code is ’x’ and we haven’t already found one
 31 if ($code eq ’x’ and ! $foundX) {
 32
 33 # change the x to a v
 34 $code = ’v’;
 35
 36 # set flag so we know not to translate any more subfield x
 37 $foundX = 1;
 38
 39 }
 40
 41 # add our (potentially changed) subfield data to our new
 42 # subfield data array
 43 unshift(@newSubfields, $code, $data);
 44
 45 }
 46
 47 # if we did find a subfield x then create a new field using our new
 48 # subfield data, and replace the old one with the new one
 49 if ($foundX) {
 50 my $newSubject = MARC::Field->new(
 51 $subject->tag(),
 52 $subject->indicator(1),
 53 $subject->indicator(2),
 54 @newSubfields
 55);
 56 $subject->replace_with($newSubject);
 57 }
 58
 59 }
 60
 61 # output the potentially changed record as MARC
 62 print $record->as_usmarc();
 63
 64 }

VALIDATING
The MARC::Record package has some extra goodies to allow you to validate records...MARC::Lint.
MARC::Lint provides an extensive battery of tests, and it also provides a framework for adding more.

14 17 November 2003

pod2pdf Tutorial.pod

Using MARC::Lint
Here is an example of using MARC::Lint to generate a list of errors present in a batch of records in a file
named ‘file.dat’.
 1 ## Example 20
 2
 3 use MARC::Batch;
 4 use MARC::Lint;
 5
 6 my $batch = MARC::Batch->new(’USMARC’,’file.dat’);
 7 my $linter = MARC::Lint->new();
 8 my $counter = 0;
 9
 10 while (my $record = $batch->next()) {
 11
 12 $counter++;
 13
 14 ## feed the record to our linter object
 15 $linter->check_record($record);
 16
 17 ## get the warnings
 18 my @warnings = $linter->warnings();
 19
 20 ## output warnings (if any) with the record #
 21 if (@warnings) {
 22
 23 print "RECORD $counter\n";
 24 print join("\n",@warnings),"\n";
 25
 26 }
 27
 28 }

MARC::Lint is quite thorough, and will check the following when validating:

 Presence of 245 field.

 Repeatability of fields.

 Repeatability of subfields.

 Valid use of subfield within particular fields.

 Presence of indicators.

 Indicator values.

Customizing MARC::Lint
MARC::Lint makes no claim to check *everything* that might be wrong with a MARC record. In
practice, individual libraries may have their own idea about what is valid or invalid. For example a
library may mandate that all MARC records with an 856 field should have a subfield z that reads
"Connect to this resource".
MARC::Lint does provide a framework for adding rules. It can be done using the object oriented
programming technique of inheritance. In short you can create your own subclass of MARC::Lint, and
then use it to validate your records. Here‘s an example:
 1 ## Example 21
 2
 3 ## first, create our own subclass of MARC::Lint
 4 ## should be saved in a file called MyLint.pm
 5
 6 package MyLint;
 7 use base qw(MARC::Lint);
 8
 9 ## add a method to check that the 856 fields contain

17 November 2003 15

Tutorial.pod pod2pdf

 10 ## a correct subfield z
 11 sub check_856 {
 12
 13 ## your method is passed the MARC::Lint and MARC::Field objects
 14 my ($self,$field) = @_;
 15
 16 if ($field->subfield(’z’) ne ’Connect to this resource’) {
 17
 18 ## add a warning to our lint object
 19 $self->warn("856 subfield z must read ’Connect to this resource’.");
 20
 21 }
 22
 23 }
 24
 25

 1 ## Then create a separate program that uses your subclass to validate
 2 ## NOTE: you need to make sure your program is able to find your
 3 ## module MyLint.pm ... this can be achieved by putting both MyLint.pm
 4 ## and this program in the same directory
 5
 6 use MARC::Batch;
 7 use MyLint;
 8
 9 my $linter = MyLint->new();
 10 my $batch = MARC::Batch->new(’USMARC’,’file.marc’);
 11 my $counter = 0;
 12
 13 while (my $record = $batch->next()) {
 14
 15 $counter++;
 16
 17 ## check the record
 18 $linter->check_record($record);
 19
 20 ## get the warnings, and print them out
 21 my @warnings = $linter->warnings();
 22 if (@warnings) {
 23 print "RECORD $counter\n";
 24 print join("\n",@warnings),"\n";
 25 }
 26
 27 }

Notice how the call to check_record() at line 18 just above automatically calls the check_record in
MARC::Lint. The property of inheritance is what makes this happen. $linter is an instance of the MyLint
class, and MyLint inherits from the MARC::Lint class, which allows $linter to inherit all the
functionality of a normal MARC::Lint object *plus* the new functionality found in the check_856
method.
Notice also that we don‘t have to call check_856() directly. The call to check_record() automatically
looks for any check_XXX methods that it can call to verify the record. Pretty neat stuff. If you‘ve added
validation checks that you think could be of use to general public please share them on the perl4lib
mailing list, or become a developer and add them to the source!

SWOLLEN APPENDICES
Brian Eno fans might catch this reference to his autobiography which was comprised of a years worth of
diary entries plus extra topics at the end, and was entitled "A Year With Swollen Appendices". The
following section is a grab bag group of appendices. Many of them are probably not filled in yet, this is

16 17 November 2003

pod2pdf Tutorial.pod

because they are just ideas...so perhaps the appendices aren‘t that swollen yet. Feel free to suggest new
ones, or to fill these in.

Comparing Collections

Authority Records

URLs

ISBN/ISSNs

Call numbers

Subject headings
Suppose you have a batch of MARC records and you want to extract all the subject headings, and
generate a report of how many times each subject heading appeared in the batch.
 1 use MARC::File::USMARC;
 2 use constant MAX => 20;
 3
 4 my %counts;
 5
 6 my $filename = shift or die "Must specify filename\n";
 7 my $file = MARC::File::USMARC->in($filename);
 8
 9 while (my $marc = $file->next()) {
 10 for my $field ($marc->field("6..")) {
 11 my $heading = $field->subfield(’a’);
 12
 13 # Remove certain trailing whitespace and punctuation.
 14 $heading =~ s/[.,]?\s*$//;
 15
 16 # Now count it
 17 ++$counts{$heading};
 18 }
 19 }
 20 $file->close();
 21
 22 # Sort the list of headings based on the count of each.
 23 my @headings = reverse sort { $counts{$a} <=> $counts{$b} } keys %counts;
 24
 25 # Take the top N hits.
 26 @headings = @headings[0..MAX-1];
 27
 28 # Print out the results
 29 for my $heading (@headings) {
 30 printf("%5d %s\n", $counts{$heading}, $heading);
 31 }

Which will generate results like this:
 600 United States
 140 World War, 1939-1945
 78 Great Britain
 63 Afro-Americans
 61 Indians of North America
 58 American poetry
 55 France
 53 West (U.S.)
 53 Science fiction
 53 American literature
 50 Shakespeare, William
 48 Soviet Union
 46 Mystery and detective stories

17 November 2003 17

Tutorial.pod pod2pdf

 45 Presidents
 43 China
 40 Frontier and pioneer life
 38 English poetry
 37 Authors, American
 37 English language
 35 Japan

HTML

XML

Excel

Databases

Z39.50
Chris Biemesderfer was kind enough to contribute a short example of how to use MARC::Record in
tandem with Net::Z3950. Net::Z3950 is a CPAN module which provides an easy to use interface to the
Z39.50 protocol so that you can write programs that retrieve records from bibliographic database around
the world.
Chris’ program is a command line utility which you can run like so:
 ./zm.pl 0596000278

where 0596000278 is an ISBN (for the 3rd edition of the Camel incidentally). The program will query
the Library of Congress Z39.50 server for the ISBN, and dump out the retrieved MARC record on the
screen. The program is designed to lookup multiple ISBNs if you separate them with a space. This is
just an example showing what is possible.
 1 #! /usr/bin/perl -w
 2
 3 # GET-MARC-ISBN -- Get MARC records by ISBN from a Z39.50 server
 4
 5 use strict;
 6 use Carp;
 7 use Net::Z3950;
 8 use MARC::Record;
 9
 10 exit if ($#ARGV < 0);
 11
 12 # We handle multiple ISBNs in the same query by assembling a
 13 # (potentially very large) search string with Prefix Query Notation
 14 # that ORs the ISBN-bearing attributes.
 15 #
 16 # For purposes of automation, we want to request batches of many MARC
 17 # records. I am not a Z39.50 weenie, though, and I don’t know
 18 # offhand if there is a limit on how big a PQN query can be...
 19
 20 my $zq = "\@attr 1=7 ". pop();
 21 while (@ARGV) { $zq = ’@or @attr 1=7 ’. pop() ." $zq" }
 22
 23 ## HERE IS THE CODE FOR Z3950 REC RETRIEVAL
 24
 25 # Set up connection management structures, connect to the server,
 26 # and submit the Z39.50 query.
 27
 28 my $mgr = Net::Z3950::Manager->new(databaseName => ’voyager’);
 29 $mgr->option(elementSetName => "f");
 30 $mgr->option(preferredRecordSyntax => Net::Z3950::RecordSyntax::USMARC);
 31
 32 my $conn = $mgr->connect(’z3950.loc.gov’, ’7090’);
 33 croak "Unable to connect to server $server" if !defined($conn);

18 17 November 2003

pod2pdf Tutorial.pod

 34
 35 my $rs = $conn->search($zq);
 36
 37 my $numrec = $rs->size();
 38 print STDERR "$numrec record(s) found\n";
 39
 40 for (my $ii = 1; $ii <= $numrec; $ii++) {
 41
 42 # Extract MARC records from Z3950 result set, and load MARC::Record.
 43
 44 my $zrec = $rs->record($ii);
 45 my $mrec = MARC::Record->new_from_usmarc($zrec->rawdata());
 46 print $mrec->as_formatted, "\n\n";
 47
 48 }

Procite/Endnote

CONTRIBUTORS
Many thanks to all the contributors who have made this document possible.

 Chris Biemesderfer <chris@seagoat.com>

 Morbus Iff <morbus@disobey.com>

 Andy Lester <andy@petdance.com>

 Christopher Morgan <morgan@acm.org>

 Shashi Pinheiro <SPinheiro@utsa.edu>

 Jackie Shieh <jshieh@umich.edu>

 Ed Summers <ehs@pobox.com>

17 November 2003 19

Tutorial.pod pod2pdf

20 17 November 2003

	Table of Contents
	NAME
	SYNOPSIS
	INTRODUCTION
	What is MARC?
	What is this Tutorial?
	History of MARC on CPAN
	Brief Overview of MARC Classes
	MARC::Batch
	MARC::Field
	MARC::Lint
	MARC::Record
	MARC::Doc::Tutorial
	MARC::File
	MARC::File::MicroLIF
	MARC::File::USMARC

	Help Wanted!

	READING
	Reading a record from a file
	Iterating through a batch file
	Checking for errors
	Recovering from errors
	Looking at a field
	Looking at repeatable fields
	Looking at a set of related fields
	Looking at all the fields in a record

	CREATING
	Creating a record
	1
	2
	3
	4

	Creating a record from raw MARC data in a variable

	WRITING
	Writing records to a file
	Debugging with as_formatted()
	Debugging with marcdump()

	UPDATING
	Adding a field
	Preserving field order
	Deleting a field
	Changing existing fields
	1
	2
	3
	4

	Updating subfields and indicators
	Changing a record`s leader
	Modifying fields without indicators
	Reordering subfields
	1
	2
	3
	4
	5

	Updating subject subfield x to subfield v

	VALIDATING
	Using MARC::Lint
	Customizing MARC::Lint

	SWOLLEN APPENDICES
	Comparing Collections
	Authority Records
	URLs
	ISBN/ISSNs
	Call numbers
	Subject headings
	HTML
	XML
	Excel
	Databases
	Z39.50
	Procite/Endnote

	CONTRIBUTORS

