
POD Translation
by pod2pdf
ajf@afco.demon.co.uk

Record.pm

Title Page Record.pm

06 November 2003 Fly leaf

Table of Contents
Record.pm

NAME 1
VERSION 1.32 1
DESCRIPTION 1
EXPORT 1
ERROR HANDLING 1
CONSTRUCTORS 1

new() 1
new_from_usmarc($marcblob [, \&filter_func($tagno,$tagdata)]) 1

COMMON FIELD RETRIEVAL METHODS 1
title() 1
title_proper() 1
author() 1
edition() 1
publication_date() 1

FIELD & SUBFIELD ACCESS METHODS 1
fields() 1
field(tagspec(s)) 1
subfield(tag,subfield) 1
append_fields(@fields) 2
insert_fields_before($before_field,@new_fields) 2
insert_fields_after($after_field,@new_fields) 2
insert_fields_ordered(@new_fields) 2
insert_grouped_field(field) 2
delete_field($field) 2
as_usmarc() 2
as_formatted() 2
leader() 2
set_leader_lengths($reclen,$baseaddr) 3
clone() 3
warnings() 3
add_fields() 3

1 Create a MARC::Field object and add it 3
2 Add the data fields directly, and let add_fields() take care of... 3
3 Same as #2 above, but pass multiple fields of data in... 3

DESIGN NOTES 3
It‘s built for quick prototyping 3
It‘s built for extensibility 4
It‘s designed around accessor methods 4
It‘s not built for speed 4

RELATED MODULES 4
SEE ALSO 4

perl4lib (http://www.rice.edu/perl4lib/) 4
Library Of Congress MARC pages (http://www.loc.gov/marc/) 4
Understanding MARC Bibliographic (http://lcweb.loc.gov/marc/umb/) 4
Tag Of The Month (http://www.tagofthemonth.com/) 4

TODO 4
Incorporate MARC.pm in the distribution. 4
Podify MARC.pm 4
Allow regexes across the entire tag 4
Insert a field in an arbitrary place in the record 4
Allow deleting a field 4
Modifying an existing field 4

06 November 2003 i

Record.pm Table of Contents

BUGS, WISHES AND CORRESPONDENCE 4
IDEAS 5

Create multiple output formats. 5
LICENSE 5
AUTHOR 5

ii 06 November 2003

pod2pdf Record.pm

NAME
MARC::Record - Perl extension for handling MARC records

VERSION 1.32

 $Id: Record.pm,v 1.69 2003/11/06 15:30:26 edsummers Exp $

DESCRIPTION
Module for handling MARC records as objects. The file-handling stuff is in MARC::File::*.

EXPORT
None.

ERROR HANDLING
Any errors generated are stored in $MARC::Record::ERROR. Warnings are kept with the record and
accessible in the warnings() method.

CONSTRUCTORS

new()
Base constructor for the class. It just returns a completely empty record. To get real data, you‘ll need to
populate it with fields, or use one of the MARC::File::* modules to read from a file.

new_from_usmarc($marcblob [, \&filter_func($tagno,$tagdata)])
This is a wrapper around MARC::File::USMARC::decode() for compatibility with older versions
of MARC::Record.
The wanted_func() is optional. See MARC::File::USMARC::decode for details.

COMMON FIELD RETRIEVAL METHODS
Following are a number of convenience methods for commonly-retrieved data fields. Please note that
they each return strings, not MARC::Field objects. They return empty strings if the appropriate field or
subfield is not found. This is as opposed to the field()/subfield() methods which return undef if
something‘s not found. My assumption is that these methods are used for quick & dirty reports and you
don‘t want to mess around with noting if something is undef.
Also note that no punctuation cleanup is done. If the 245a is "Programming Perl / ", then that‘s what
you‘ll get back, rather than "Programming Perl".

title()
Returns the title from the 245 tag.

title_proper()
Returns the title proper from the 245 tag, subfields a, n and p.

author()
Returns the author from the 100, 110 or 111 tag.

edition()
Returns the edition from the 250 tag, subfield a.

publication_date()
Returns the publication date from the 260 tag, subfield c.

FIELD & SUBFIELD ACCESS METHODS

fields()
Returns a list of all the fields in the record. The list contains a MARC::Field object for each field in the
record.

field(tagspec(s))
Returns a list of tags that match the field specifier, or in scalar context, just the first matching tag.
The field specifier can be a simple number (i.e. "245"), or use the "." notation of wildcarding (i.e.
subject tags are "6..").

subfield(tag,subfield)
Shortcut method for getting just a subfield for a tag. These are equivalent:

06 November 2003 1

Record.pm pod2pdf

 my $title = $marc->field(’245’)->subfield("a");
 my $title = $marc->subfield(’245’,"a");

If either the field or subfield can‘t be found, undef is returned.

append_fields(@fields)
Appends the field specified by $field to the end of the record. @fields need to be MARC::Field
objects.
 my $field = MARC::Field->new(’590’,’’,’’,’a’ => ’My local note.’);
 $record->append_fields($field);

Returns the number of fields appended.

insert_fields_before($before_field,@new_fields)
Inserts the field specified by $new_field before the field $before_field. Returns the number of
fields inserted, or undef on failures. Both $before_field and all @new_fields need to be
MARC::Field objects. If they are not an exception will be thrown.
 my $before_field = $record->field(’260’);
 my $new_field = MARC::Field->new(’250’,’’,’’,’a’ => ’2nd ed.’);
 $record->insert_fields_before($before_field,$new_field);

insert_fields_after($after_field,@new_fields)
Identical to insert_fields_before(), but fields are added after $after_field. Remeber,
$after_field and any new fields must be valid MARC::Field objects or else an exception will be thrown.

insert_fields_ordered(@new_fields)
Will insert fields in strictly numerical order. So a 008 will be filed after a 001 field. See
insert_grouped_field() for an additional ordering.

insert_grouped_field(field)
Will insert the specified MARC::Field object into the record in grouped order and return true (1) on
success, and false (undef) on failure.
 my $field = MARC::Field->new(’510’, ’Indexed by Google.’);
 $record->insert_grouped_field($field);

For example, if a ‘650’ field is inserted with insert_grouped_field() it will be inserted at the end of the
6XX group of tags. After discussion most people wanted the ability to add a new field to the end of the
hundred group where it belonged. The reason is that according to the MARC format, fields within a
record are supposed to be grouped by block (hundred groups). This means that fields may not
necessarily be in tag order.

delete_field($field)
Deletes a field from the record.
The field must have been retrieved from the record using the field() method. For example, to delete
a 526 tag if it exists:
 my $tag526 = $marc->field("526");
 if ($tag526) {

$marc->delete_field($tag526);
 }

delete_field() returns the number of fields that were deleted. This shouldn‘t be 0 unless you
didn‘t get the tag properly.

as_usmarc()
This is a wrapper around MARC::File::USMARC::encode() for compatibility with older versions
of MARC::Record.

as_formatted()
Returns a pretty string for printing in a MARC dump.

leader()
Returns the leader for the record. Sets the leader if text is defined. No error checking is done on the
validity of the leader.

2 06 November 2003

pod2pdf Record.pm

set_leader_lengths($reclen,$baseaddr)
Internal function for updating the leader‘s length and base address.

clone()
The clone() method makes a copy of an existing MARC record and returns the new version. Note
that you cannot just say:
 my $newmarc = $oldmarc;

This just makes a copy of the reference, not a new object. You must use the clone() method like so:
 my $newmarc = $oldmarc->clone;

You can also specify field specs to filter down only a certain subset of fields. For instance, if you only
wanted the title and ISBN tags from a record, you could do this:
 my $small_marc = $marc->clone(245, ’020’);

The order of the fields is preserved as it was in the original record.

warnings()
Returns the warnings (as a list) that were created when the record was read. These are things like
"Invalid indicators converted to blanks".
 my @warnings = $record->warnings();

The warnings are items that you might be interested in, or might not. It depends on how stringently
you‘re checking data. If you‘re doing some grunt data analysis, you probably don‘t care.
A side effect of calling warnings() is that the warning buffer will be cleared.

add_fields()
add_fields() is now deprecated, and users are encouraged to use append_fields(),
insert_fields_after(), and insert_fields_before() since they do what you want
probably. It is still here though, for backwards compatability.
add_fields() adds MARC::Field objects to the end of the list. Returns the number of fields added,
or undef if there was an error.
There are three ways of calling add_fields() to add data to the record.

1 Create a MARC::Field object and add it

 my $author = MARC::Field->new(
 100, "1", " ", a => "Arnosky, Jim."
);

 $marc->add_fields($author);

2 Add the data fields directly, and let add_fields() take care of the objectifying.

 $marc->add_fields(
 245, "1", "0",
 a => "Raccoons and ripe corn /",
 c => "Jim Arnosky.",
);

3 Same as #2 above, but pass multiple fields of data in anonymous lists

 $marc->add_fields(
[250, " ", " ", a => "1st ed."],
[650, "1", " ", a => "Raccoons."],
);

DESIGN NOTES
A brief discussion of why MARC::Record is done the way it is:

It‘s built for quick prototyping
One of the areas Perl excels is in allowing the programmer to create easy solutions quickly.
MARC::Record is designed along those same lines. You want a program to dump all the 6XX
tags in a file? MARC::Record is your friend.

06 November 2003 3

Record.pm pod2pdf

It‘s built for extensibility
Currently, I‘m using MARC::Record for analyzing bibliographic data, but who knows what might
happen in the future? MARC::Record needs to be just as adept at authority data, too.

It‘s designed around accessor methods
I use method calls everywhere, and I expect calling programs to do the same, rather than accessing
internal data directly. If you access an object‘s hash fields on your own, future releases may break
your code.

It‘s not built for speed
One of the tradeoffs in using accessor methods is some overhead in the method calls. Is this slow?
 I don‘t know, I haven‘t measured. I would suggest that if you‘re a cycle junkie that you use
Benchmark.pm to check to see where your bottlenecks are, and then decide if MARC::Record is
for you.

RELATED MODULES
MARC::Record, MARC::Lint

SEE ALSO
perl4lib (http://www.rice.edu/perl4lib/)

A mailing list devoted to the use of Perl in libraries.

Library Of Congress MARC pages (http://www.loc.gov/marc/)
The definitive source for all things MARC.

Understanding MARC Bibliographic (http://lcweb.loc.gov/marc/umb/)
Online version of the free booklet. An excellent overview of the MARC format. Essential.

Tag Of The Month (http://www.tagofthemonth.com/)
Follett Software Company‘s (http://www.fsc.follett.com/) monthly discussion of various MARC
tags.

TODO
Incorporate MARC.pm in the distribution.

Combine MARC.pm and MARC::* into one distribution.

Podify MARC.pm
Allow regexes across the entire tag

Imagine something like this:
 my @sears_headings = $marc->tag_grep(/Sears/);

(from Mike O‘Regan)

Insert a field in an arbitrary place in the record
Allow deleting a field

 for my $field ($record->field("856")) {
$record->delete_field($field) unless useful($field);
} # for

(from Anne Highsmith hismith@tamu.edu)

Modifying an existing field

BUGS, WISHES AND CORRESPONDENCE
Please feel free to email me at andy@petdance.com. I‘m glad to help as best I can, and I‘m always
interested in bugs, suggestions and patches.
The MARC::Record development team uses the RT bug tracking system at http://rt.cpan.org. If your
email is about a bug or suggestion, please report it through the RT system. This is a huge help for the
team, and you‘ll be notified of progress as things get fixed or updated. If you prefer not to use the
website, you can send your bug to bug-MARC-Record@rt.cpan.org.

4 06 November 2003

http://www.rice.edu/perl4lib/
http://www.loc.gov/marc/
http://lcweb.loc.gov/marc/umb/
http://www.tagofthemonth.com/
http://www.fsc.follett.com/
http://rt.cpan.org

pod2pdf Record.pm

IDEAS
Ideas are things that have been considered, but nobody‘s actually asked for.

Create multiple output formats.
These could be ASCII, XML, or MarcMaker.

LICENSE
This code may be distributed under the same terms as Perl itself.
Please note that these modules are not products of or supported by the employers of the various
contributors to the code.

AUTHOR
Andy Lester, <marc@petdance.com>

06 November 2003 5

Record.pm pod2pdf

6 06 November 2003

	Table of Contents
	NAME
	VERSION 1.32
	DESCRIPTION
	EXPORT
	ERROR HANDLING
	CONSTRUCTORS
	new()
	new_from_usmarc($marcblob [, \&filter_func($tagno,$tagdata)])

	COMMON FIELD RETRIEVAL METHODS
	title()
	title_proper()
	author()
	edition()
	publication_date()

	FIELD & SUBFIELD ACCESS METHODS
	fields()
	field(tagspec(s))
	subfield(tag,subfield)
	append_fields(@fields)
	insert_fields_before($before_field,@new_fields)
	insert_fields_after($after_field,@new_fields)
	insert_fields_ordered(@new_fields)
	insert_grouped_field(field)
	delete_field($field)
	as_usmarc()
	as_formatted()
	leader()
	set_leader_lengths($reclen,$baseaddr)
	clone()
	warnings()
	add_fields()
	1 Create a MARC::Field object and add it
	2 Add the data fields directly, and let add_fields() take care of the objectifying.
	3 Same as #2 above, but pass multiple fields of data in anonymous lists

	DESIGN NOTES
	It`s built for quick prototyping
	It`s built for extensibility
	It`s designed around accessor methods
	It`s not built for speed

	RELATED MODULES
	SEE ALSO
	perl4lib (http://www.rice.edu/perl4lib/)
	Library Of Congress MARC pages (http://www.loc.gov/marc/)
	Understanding MARC Bibliographic (http://lcweb.loc.gov/marc/umb/)
	Tag Of The Month (http://www.tagofthemonth.com/)

	TODO
	Incorporate MARC.pm in the distribution.
	Podify MARC.pm
	Allow regexes across the entire tag
	Insert a field in an arbitrary place in the record
	Allow deleting a field
	Modifying an existing field

	BUGS, WISHES AND CORRESPONDENCE
	IDEAS
	Create multiple output formats.

	LICENSE
	AUTHOR

